首页> 外文学位 >Numerical simulation of airflow, particle deposition and drug delivery in a representative human nasal airway model.
【24h】

Numerical simulation of airflow, particle deposition and drug delivery in a representative human nasal airway model.

机译:代表人鼻气道模型中气流,颗粒沉积和药物输送的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

The human nasal cavities, each with an effective length of only 10cm, feature a wide array of basic flow phenomena due to their complex geometries. Dependent on such airflow fields are the transport and deposition of micro- and nano-particles in the human nasal cavities, of interest to engineers, scientists, air-pollution regulators, and healthcare officials.; By utilizing advanced CAD and reverse engineering skills, a realistic model of the human nasal cavity was constructed from MRI image data for 3-D computer simulations. Assuming laminar quasi-steady airflow, dilute micro- and nano-particle suspension flows and local deposition efficiencies were analyzed for 7.5≤Q≤20L/min and 1nm ≤ d p ≤ 50mum. Simulation results are in good agreement with experimental measurements, assuring that computational fluid-particle dynamics (CFPD) is an effective and efficient tool to predict both toxic and therapeutic aerosol dynamics in the nasal cavities.; Both nano- and micro-particle deposition efficiencies are influenced by particle size and airflow rate. Specifically, deposition of nanoparticles (1nm ≤ dp ≤ 150nm) is governed by particle diffusion or Brownian motion, and decreases with increasing particle size and airflow rate in the nasal cavity. For microparticle deposition, the major mechanism is particle inertia. As a result, microparticle deposition increases for larger particles and higher airflow rates.; Computational efforts were extended to nasal drug delivery, i.e., a droplet-spray model was developed which can be used to simulate nasal sprays. However, it turned out, after varying several droplet-spray parameters and trying different inlet conditions, that direct nasal sprays cannot achieve efficient drug delivery to the desirable surface area, e.g., the human olfactory region. However, a new nasal drug delivery method, called bi-directional nasal drug delivery, was successfully tested. The simulation results indicate that bi-directional nasal drug delivery overcomes major shortcomings of nasal sprays and may be a good candidate for the next generation of nasal drug delivery systems.
机译:每个人的鼻腔有效长度仅为10cm,由于其复杂的几何形状而具有多种基本的流动现象。工程师,科学家,空气污染管理者和医疗保健官员对微和纳米颗粒在人鼻腔中的运输和沉积取决于这种气流场;通过利用先进的CAD和逆向工程技术,从MRI图像数据构建了人体鼻腔的真实模型,用于3-D计算机仿真。假设层流为准稳定气流,则分析了7.5≤Q≤20L/ min和1nm≤d p≤50mum的稀释的微米级和纳米级悬浮颗粒流以及局部沉积效率。模拟结果与实验测量结果非常吻合,确保计算流体粒子动力学(CFPD)是预测鼻腔中有毒和治疗性气溶胶动力学的有效手段。纳米和微粒沉积效率均受粒径和气流速率的影响。具体而言,纳米粒子(1nm≤dp≤150nm)的沉积受粒子扩散或布朗运动控制,并随着鼻腔中粒径和气流速率的增加而减少。对于微粒沉积,主要机理是颗粒惯性。结果,对于更大的颗粒和更高的气流速率,微粒沉积增加。计算工作已扩展到鼻腔给药,即开发了可用于模拟鼻腔喷雾的液滴喷射模型。然而,事实证明,在改变几个液滴喷雾参数并尝试不同的入口条件之后,直接的鼻喷雾剂不能有效地将药物递送到所需的表面积,例如人的嗅觉区域。但是,成功测试了一种新的鼻腔给药方法,即双向鼻腔给药。仿真结果表明双向鼻腔给药克服了鼻腔喷雾剂的主要缺点,可能是下一代鼻腔给药系统的良好选择。

著录项

  • 作者

    Shi, Huawei.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Biomedical.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号