首页> 外文学位 >A micromachined ultrasonic droplet generator: Design, fabrication, visualization, and modeling.
【24h】

A micromachined ultrasonic droplet generator: Design, fabrication, visualization, and modeling.

机译:微型超声波液滴发生器:设计,制造,可视化和建模。

获取原文
获取原文并翻译 | 示例

摘要

The focus of this Ph.D. thesis research is a new piezoelectrically driven micromachined ultrasonic atomizer concept that utilizes fluid cavity resonances in the 1--5 MHz range along with acoustic wave focusing to generate the pressure gradient required for droplet or jet ejection. This ejection technique exhibits low-power operation while addressing the key challenges associated with other atomization technologies including production of sub-5 mum diameter droplets, low-temperature operation, the capacity to scale throughput up or down, and simple, low-cost fabrication. This thesis research includes device development and fabrication as well as experimental characterization and theoretical modeling of the acoustics and fluid mechanics underlying device operation. The main goal is to gain an understanding of the fundamental physics of these processes in order to achieve optimal design and controlled operation of the atomizer.; Simulations of the acoustic response of the system for various device geometries and different ejection fluid properties predict the resonant frequencies of the device and confirm that pressure field focusing occurs. High-spatial-resolution stroboscopic visualization of fluid ejection under various operating conditions is used to investigate whether the proposed atomizer is capable of operating in either the discrete-droplet or continuous-jet mode. The results of the visualization experiments combined with a scaling analysis provide a basic understanding of the physics governing the ejection process and allow for the establishment of simple scaling laws that prescribe the mode (e.g., discrete-droplet vs. continuous-jet) of ejection. In parallel, a detailed computational fluid dynamics (CFD) analysis of the fluid interface evolution and droplet formation and transport during the ejection process provides in-depth insight into the physics of the ejection process and determines the limits of validity of the scaling laws.; These characterization efforts performed in concert with device development lead to the optimal device design. The unique advantages enabled by the developed micromachined ultrasonic atomizer are illustrated for challenging fluid atomization examples from a variety of applications ranging from fuel processing on small scales to ultra-soft electrospray ionization of biomolecules for bioanalytical mass spectrometry.
机译:本博士课程的重点论文研究是一种新的压电驱动微机械超声雾化器概念,该概念利用1--5 MHz范围内的流体腔共振以及声波聚焦来产生液滴或喷射所需的压力梯度。这种喷射技术展现了低功率运行,同时解决了与其他雾化技术相关的关键挑战,这些挑战包括亚5um直径液滴的生产,低温运行,扩大或缩小规模生产能力以及简单,低成本的制造。本文的研究包括设备开发和制造,以及设备工作背后的声学和流体力学的实验表征和理论建模。主要目标是了解这些过程的基本物理原理,以实现雾化器的最佳设计和可控操作。针对各种设备几何形状和不同喷射流体特性的系统声学响应的仿真预测了设备的共振频率,并确认了发生了压力场聚焦。在各种操作条件下对流体喷射的高分辨率频闪观测可以用来研究所提出的雾化器是否能够以离散液滴或连续喷射模式运行。可视化实验的结果与定标分析相结合,提供了对控制喷射过程的物理学的基本了解,并允许建立简单的定标定律,该定律规定了喷射模式(例如离散液滴与连续喷射)。同时,在喷射过程中对流体界面演变以及液滴形成和传输进行了详细的计算流体动力学(CFD)分析,可深入了解喷射过程的物理原理,并确定缩放定律的有效性极限。这些与设备开发相一致的表征工作导致了最佳的设备设计。举例说明了开发的微机械超声雾化器所具有的独特优势,可用于挑战性流体雾化示例,其应用范围从小规模的燃料处理到用于生物分析质谱的生物分子的超软电喷雾电离。

著录项

  • 作者

    Meacham, John Marcus.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号