首页> 外文学位 >Nonlinear dynamics of multi-mesh gear systems.
【24h】

Nonlinear dynamics of multi-mesh gear systems.

机译:多啮合齿轮系统的非线性动力学。

获取原文
获取原文并翻译 | 示例

摘要

Multi-mesh gear systems are used in a variety of industrial machinery, where noise, quality, and reliability lie in gear vibration. The complicated dynamic forces at the gear meshes are the source of vibration and result from parametric excitation and tooth contact nonlinearity. The primary goal of this work is to develop mathematical models for multi-mesh gearsets with nonlinear, time-varying elements, to conduct numerical and analytical studies to understand parametric and nonlinear gear dynamic behaviors, such as parametric instabilities, frequency response, contact loss, and profile modification, and to provide guidelines for practical design and troubleshooting.; First, a nonlinear analytical model considering dynamic load distribution between individual gear teeth is proposed, including the influence of variable mesh stiffnesses, profile modifications, and contact loss. This model captures the total and partial contact loss and yields better agreement than two existing models when compared against nonlinear gear dynamics from a validated finite element benchmark. Perturbation analysis finds approximate frequency response solutions for the system operating in the absence of contact loss due to the optimized system parameters. The closed-form solution is validated by numerical integration and provides guidance for optimizing mesh phasing, contact ratios, and profile modification magnitude and length.; Second, the nonlinear, parametrically excited dynamics of idler and counter-shaft gear systems are examined. The periodic steady state solutions are obtained using analytical and numerical approaches. With proper stipulations, the non-smooth tooth separation function that determines contact loss and the variable mesh stiffness are reformulated into a form suitable for perturbation. The closed-form solutions from perturbation analysis expose the impact of key parameters on the nonlinear response. The analysis for this strongly nonlinear system compares well to separate harmonic balance/continuation and numerical integration solutions. The expressions in terms of fundamental design quantities have natural practical application.; Finally, this work studies the influences of tooth friction on parametric instabilities and dynamic response of a single-mesh gear pair. A mechanism whereby tooth friction causes gear tooth bending is shown to significantly impact the dynamic response. A dynamic translational-rotational model is developed to consider this mechanism together with the other contributions of tooth friction and mesh stiffness fluctuation. An iterative integration method to analyze parametric instabilities is proposed and compared with an established numerical method. Perturbation analysis is conducted to find approximate solutions that predict and explain the numerical parametric instabilities. The effects of time-varying friction moments about the gear centers and friction-induced tooth bending are critical to parametric instabilities and dynamic response. The impacts of friction coefficient, bending effect, contact ratio, and modal damping on the stability boundaries are revealed. The friction bending effect on the nonlinear dynamic response is examined and validated by finite element results.
机译:多啮合齿轮系统用于各种工业机械,其中噪声,质量和可靠性取决于齿轮振动。齿轮啮合处的复杂动力是振动的源头,是由参数激励和齿接触非线性引起的。这项工作的主要目标是为带有非线性,时变元素的多啮合齿轮组开发数学模型,进行数值和分析研究,以了解参数和非线性齿轮的动态行为,例如参数不稳定性,频率响应,接触损耗,和配置文件修改,并为实际设计和故障排除提供指导。首先,提出了一种非线性分析模型,该模型考虑了单个齿轮齿之间的动态载荷分布,包括可变啮合刚度,轮廓修改和接触损耗的影响。与来自已验证的有限元基准的非线性齿轮动力学相比,该模型捕获了全部和部分接触损耗,并且比两个现有模型具有更好的一致性。扰动分析找到了由于优化的系统参数而在没有接触损耗的情况下运行的系统的近似频率响应解。封闭形式的解决方案通过数值积分进行了验证,并为优化网格定相,接触比以及轮廓修改的幅度和长度提供了指导。其次,研究了惰轮和副轴齿轮系统的非线性参数激励动力学。使用解析和数值方法获得周期稳态解。通过适当的规定,可以将确定接触损耗的可变齿分离功能和可变的啮合刚度重新组合为适合扰动的形式。摄动分析的闭式解揭示了关键参数对非线性响应的影响。此强非线性系统的分析与单独的谐波平衡/连续性和数值积分解决方案进行了很好的比较。基本设计数量方面的表达具有自然的实际应用价值。最后,这项工作研究了齿轮摩擦对单啮合齿轮副的参数不稳定性和动态响应的影响。齿轮摩擦导致齿轮弯曲的机制显示为显着影响动态响应。建立了一个动态的平移-旋转模型来考虑这种机理,以及齿摩擦和啮合刚度波动的其他影响。提出了一种分析参数不稳定性的迭代积分方法,并将其与已建立的数值方法进行了比较。进行扰动分析以找到可预测和解释数值参数不稳定性的近似解。围绕齿轮中心的时变摩擦力矩和摩擦引起的齿弯曲的影响对于参数不稳定性和动态响应至关重要。揭示了摩擦系数,弯曲效果,接触比和模态阻尼对稳定性边界的影响。通过有限元结果对摩擦弯曲对非线性动力响应的影响进行了检验和验证。

著录项

  • 作者

    Liu, Gang.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 238 p.
  • 总页数 238
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号