首页> 外文学位 >A hyperbolic two-step model based finite difference method for studying thermal deformation in a micro thin film heated by ultrashort-pulsed lasers.
【24h】

A hyperbolic two-step model based finite difference method for studying thermal deformation in a micro thin film heated by ultrashort-pulsed lasers.

机译:基于双曲两步模型的有限差分方法,用于研究超短脉冲激光加热的微薄膜中的热变形。

获取原文
获取原文并翻译 | 示例

摘要

Heat transport through micro thin films plays a very important role in microtechnology applications. Many microelectronic devices have metal thin films as their key components. Microscale heat transfer is also important for the thermal processing of materials, including laser micromachining, laser patterning, laser synthesis and laser surface hardening. Hence, studying the thermal behavior of thin films is essential for predicting the performance of a microelectronic device or for obtaining the desired microstructure. Recently, it has become very popular to use ultrashort-pulsed lasers in thermal processing, which lasers have pulse durations of the order of subpicoseconds to femtoseconds, and these kinds of lasers can limit the undesirable spread of the thermal process zone in the heated sample. However, ultrashort-pulsed lasers can induce ultrafast damage, which occurs after the heating pulse is over. Therefore, in order to apply ultrashort-pulsed lasers successfully, one must study the thermal deformation to prevent the thermal damage.; In the previous research, the parabolic two-step micro heat transport equations have been widely applied in microscale heat transfer. However, when the laser pulse duration is much shorter than the electron-lattice thermal relaxation time for the activation of ballistic behavior in the electron gas, the parabolic two-step model may lose accuracy, as pointed out the in the literature.; It has not been seen in the literature employing the hyperbolic two-step model for studying thermal deformation in a micro thin film exposed to ultrashort-pulsed lasers, which is important for enhancing our understanding of micro heat transfer in a micro thin film exposed to ultrashort-pulsed lasers. Hence, the purpose of this dissertation is to employ the hyperbolic two-step model with temperature-dependent thermal properties for obtaining temperature distribution in a thin film induced by ultrashort-pulsed lasers and to couple with the dynamic equations of motions in order to study thermal deformation in the thin film. To this end, we first develop an implicit finite difference scheme for solving the hyperbolic two-step model with temperature-dependent thermal properties. The scheme is shown to satisfy a discrete analogus of an energy estimate. We then apply it to studying thermal deformations in two-dimensional (2D) thin films exposed to ultrashort-pulsed lasers. In this method, staggered grids are designed, and the coupling effect between lattice temperature and strain rate, as well as the hot electron blast effect in momentum transfer, are considered. As such, this obtained method allows us to avoid non-physical oscillations in the solution.; To demonstrate the applicability of the method, we test three physical cases, (1) 1D double-layered thin film with perfectly contacted interface irradiated by ultrashort-pulsed lasers, (2) 2D single-layered thin film irradiated by ultrashort-pulsed lasers, and (3) 2D double-layered thin film with perfectly contacted interface irradiated by ultrashort-pulsed lasers. Results show that the method is promising and there are some differences between the hyperbolic two-step model and the parabolic model. Particularly, one may see the differences regarding the change in electron temperature (Delta Te/(DeltaTe)max) and the displacement (u) in x direction.
机译:通过微薄膜的热传递在微技术应用中起着非常重要的作用。许多微电子设备都将金属薄膜作为其关键组件。微米级传热对于材料的热处理也很重要,包括激光微加工,激光图案化,激光合成和激光表面硬化。因此,研究薄膜的热行为对于预测微电子器件的性能或获得所需的微结构至关重要。近来,在热处理中使用超短脉冲激光器已经变得非常流行,该激光器的脉冲持续时间在亚皮秒到飞秒的数量级,并且这些类型的激光器可以限制热处理区域在加热的样品中的不良扩散。但是,超短脉冲激光器会引起超快损坏,这是在加热脉冲结束后发生的。因此,为了成功地应用超短脉冲激光器,必须研究热变形以防止热破坏。在先前的研究中,抛物线型两步微热传递方程已被广泛应用于微尺度传热。然而,如文献所指出的,当激光脉冲的持续时间比激活电子气中弹道行为的电子晶格热弛豫时间短得多时,抛物线两步模型可能会失去精度。在使用双曲两步模型研究暴露于超短脉冲激光的微薄膜中的热变形方面的文献中尚未见到,这对于增强我们对暴露于超短脉冲的微薄膜中的微热传递的理解很重要。脉冲激光器。因此,本论文的目的是采用具有温度相关热特性的双曲两步模型来获得由超短脉冲激光诱导的薄膜中的温度分布,并结合运动的动力学方程来研究热力学。薄膜变形。为此,我们首先开发了一种隐式有限差分方案,用于求解具有温度相关热特性的双曲两步模型。示出该方案满足能量估计的离散类比。然后,我们将其应用于研究暴露于超短脉冲激光的二维(2D)薄膜中的热变形。在这种方法中,设计了交错网格,并考虑了晶格温度和应变率之间的耦合效应,以及动量传递中的热电子爆炸效应。因此,这种获得的方法使我们避免了溶液中的非物理振荡。为了证明该方法的适用性,我们测试了三种物理情况:(1)超短脉冲激光辐照的界面完美接触的一维双层薄膜;(2)超短脉冲激光辐照的二维单层薄膜; (3)超短脉冲激光辐照的具有完美接触界面的二维双层薄膜。结果表明该方法是有前途的,双曲两步模型与抛物线模型之间存在一些差异。特别地,可以看到关于电子温度的变化(Delta Te /(DeltaTe)max)和在x方向上的位移(u)的差异。

著录项

  • 作者

    Niu, Tianchan.;

  • 作者单位

    Louisiana Tech University.;

  • 授予单位 Louisiana Tech University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号