首页> 外文学位 >Development of a high resolution nanolithography technique on non-planar surfaces using an evaporated electron beam resist.
【24h】

Development of a high resolution nanolithography technique on non-planar surfaces using an evaporated electron beam resist.

机译:使用蒸发的电子束抗蚀剂在非平面表面上开发高分辨率纳米光刻技术。

获取原文
获取原文并翻译 | 示例

摘要

Electron beam lithography systems used for patterning of extremely small structures are a very important tool for nanofabrication technologies. The on going miniaturization of electronic and photonic device, leads to a constant shrinking and increasing pattern density. Fundamental physical effects such as shot noise, which in lithography corresponds to the statistical fluctuations in the number of electrons contained in a beam, have a major impact on the achievable feature sizes as well as their roughness. Many different parameters in the lithography process must be taken into account in determining these fundamental limits, including exposure dose of the resist, resist thickness, beam energy, etc. A shot noise model has been developed in order to calculate the minimum exposure doses required for patterning electron beam resists at technology nodes of 50 nm and below while maintaining reasonable quality of the patterns. The doses must increase rapidly with reducing linewidth, thus imposing constraints on a variety of next generation lithography systems, such as massively parallel electron beam (MPEB) systems. The model results are applied to the particular case of MPEB systems for the patterning of integrated circuits on semiconductor wafers. An overall set of results is obtained indicating the minimum number of electron beams and electron beam current that will be required to meet industry standards.;Preserving and developing versatility in the applications has been one of the most important criteria in optimizing the QSR-5(TM) resist. Demonstrations include patterning a zone plate on the tip of an optical fiber for potential application in integrated optics. A very unusual application of patterning both sides of a silicon and a silicon nitride membrane in a single step are described which might be useful for the fabrication of high speed field effect devices such as double gate transistors (DGT). The Monte-Carlo simulation results for the case of the achievable gate length with silicon and silicon nitride membranes are also discussed. The results of conformability and patterning on V-grooves are also presented. The processes of fabrication of the high resolution metamaterial structures are discussed along with the initial measurement results via ellipsometry.;High resolution electron beam lithography poses severe constraints on the resist used for patterning, namely the need to work with very thin layers in order to achieve the highest resolutions. A new and interesting conformal resist is studied in this work, the sterol based QSR-5(TM) resist. The results of optimizing the resist properties and the development process are presented along with results for optimizing the sensitivity and contrast of this resist.
机译:用于图案化极小的结构的电子束光刻系统是纳米加工技术的非常重要的工具。电子和光子器件的持续小型化,导致不断缩小和增加图案密度。基本物理效应(例如散粒噪声)在光刻技术中与束中包含的电子数量的统计波动相对应,对可实现的特征尺寸及其粗糙度具有重大影响。在确定这些基本极限时,必须考虑光刻工艺中的许多不同参数,包括抗蚀剂的曝光剂量,抗蚀剂厚度,束能量等。已经开发了散粒噪声模型,以计算出所需的最小曝光剂量。在保持合理质量的图案的同时,在50纳米及以下的技术节点处构图电子束抗蚀剂。剂量必须随着线宽的减小而迅速增加,从而对各种下一代光刻系统(例如大规模平行电子束(MPEB)系统)施加了限制。该模型结果适用于MPEB系统的特殊情况,用于在半导体晶圆上对集成电路进行图案化。获得了一套完整的结果,表明满足行业标准所需的最小电子束和电子束电流。;在应用中保持和发展多功能性是优化QSR-5的最重要标准之一( TM)抵抗。演示包括在光纤尖端上对波带片进行构图,以在集成光学中潜在应用。描述了在单个步骤中图案化硅和氮化硅膜的两侧的非常不寻常的应用,这可能对制造诸如双栅极晶体管(DGT)的高速场效应器件有用。还讨论了在硅和氮化硅膜可达到的栅极长度情况下的蒙特卡罗模拟结果。还介绍了V形槽的一致性和图案化的结果。讨论了高分辨率超材料结构的制造过程以及通过椭偏仪得到的初始测量结果。高分辨率电子束光刻对用于构图的抗蚀剂构成了严格的约束,即需要非常薄的层才能实现最高分辨率。在这项工作中研究了一种新的有趣的保形抗蚀剂,即基于固醇的QSR-5TM抗蚀剂。提出了优化抗蚀剂性能和显影工艺的结果,以及优化该抗蚀剂的灵敏度和对比度的结果。

著录项

  • 作者

    Kelkar, Prasad S.;

  • 作者单位

    Universite de Sherbrooke (Canada).;

  • 授予单位 Universite de Sherbrooke (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号