首页> 外文学位 >Liquid phase sintering of functionally graded tungsten carbide-cobalt composites.
【24h】

Liquid phase sintering of functionally graded tungsten carbide-cobalt composites.

机译:功能梯度碳化钨-钴复合材料的液相烧结。

获取原文
获取原文并翻译 | 示例

摘要

Functionally graded WC-Co composites offer solutions to the tradeoff between wear resistance and fracture toughness in WC-Co composites. Although liquid phase sintering is the most economical and viable method for producing WC-Co parts, the main challenge in fabricating a functionally graded WC-Co composite using liquid phase sintering is that the cobalt content homogenizes across the layers resulting in a sintered part with a uniform cobalt content. The homogenization process has been attributed to liquid phase migration. Liquid phase migration (LPM) is an interfacial-energy-driven flow phenomenon that takes place in a solid-liquid two-phase system. Liquid phase migration is known to be a function of solid particle size and liquid volume fraction. Understanding and controlling LPM is crucial to liquid phase sintering of functionally graded materials. This thesis establishes a dependence of WC particle size and liquid volume fraction of the WC-Co composite on the liquid migration pressure. The unique dependence of liquid migration pressure on solid particle size and liquid volume fraction has been exploited to create an optimization chart that provides guidelines for suitable selection of WC grain size and cobalt content differences for the design of functionally graded WC-Co composites.; Carbon is a critical factor that can be used to produce a gradient of cobalt content in WC-Co composites. A cobalt gradient is established after sintering by introducing an initial gradient in carbon within a WC-Co bi layer prior to sintering. The graded microstructure is a function of sintering time and temperature as well as other factors including the volume fraction of Co3W3C (eta) phase, liquid migration pressure and carbon content. A study of the kinetics of the process is therefore necessary to fully understand and control the process and achieve the desired graded microstructure. This thesis describes a kinetic model that can be used to optimize the process. The kinetic model explains the effect of important parameters such as the volume fraction of eta phase, carbon content, and liquid migration pressure on the process kinetics.
机译:功能分级的WC-Co复合材料为WC-Co复合材料的耐磨性和断裂韧性之间的折衷提供了解决方案。尽管液相烧结是生产WC-Co零件的最经济,最可行的方法,但使用液相烧结制造功能梯度的WC-Co复合材料的主要挑战在于钴含量在各层之间均质化,导致烧结零件具有钴含量均匀。均质化过程已归因于液相迁移。液相迁移(LPM)是一种界面能量驱动的流动现象,发生在固液两相系统中。已知液相迁移是固体粒度和液体体积分数的函数。了解和控制LPM对于功能梯度材料的液相烧结至关重要。本论文建立了WC颗粒尺寸和WC-Co复合材料的液体体积分数对液体迁移压力的依赖性。已经利用液体迁移压力对固体粒度和液体体积分数的独特依赖性来创建优化图,该优化图为功能分级的WC-Co复合材料的设计提供了适当选择WC粒度和钴含量差异的指南。碳是可用于在WC-Co复合材料中产生钴含量梯度的关键因素。烧结后通过在烧结前在WC-Co双层内引入碳中的初始梯度来建立钴梯度。分级的微观结构是烧结时间和温度以及其他因素(包括Co3W3C(η)相的体积分数,液体迁移压力和碳含量)的函数。因此,有必要对过程动力学进行研究,以充分理解和控制过程并获得所需的渐变微观结构。本文描述了可用于优化过程的动力学模型。动力学模型解释了重要参数(例如eta相的体积分数,碳含量和液体迁移压力)对过程动力学的影响。

著录项

  • 作者

    Eso, Oladapo.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Engineering Metallurgy.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 冶金工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号