首页> 外文学位 >Computational study of hot electron generation and energy transport in intense laser produced hot dense matter.
【24h】

Computational study of hot electron generation and energy transport in intense laser produced hot dense matter.

机译:在强激光中产生热致密物质的热电子产生和能量传输的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

Present ultra high power lasers are capable of producing high energy density (HED) plasmas, in controlled way, with a density greater than solid density and at a high temperature of keV (1 keV ∼ 11,000,000° K). Matter in such extreme states is particularly interesting for (HED) physics such as laboratory studies of planetary and stellar astrophysics, laser fusion research, pulsed neutron source etc. To date however, the physics in HED plasma, especially, the energy transport, which is crucial to realize applications, has not been understood well. Intense laser produced plasmas are complex systems involving two widely distinct temperature distributions and are difficult to model by a single approach. Both kinetic and collisional process are equally important to understand an entire process of laser-solid interaction. By implementing atomic physics models, such as collision, ionization, and radiation damping, self consistently, in state-of-the-art particle-in-cell code (PICLS) has enabled to explore the physics involved in the HED plasmas.;Laser absorption, hot electron transport, and isochoric heating physics in laser produced hot dense plasmas are studied with a help of PICLS simulations. In particular, a novel mode of electron acceleration, namely DC-ponderomotive acceleration, is identified in the super intense laser regime which plays an important role in the coupling of laser energy to a dense plasma. Geometric effects on hot electron transport and target heating processes are examined in the reduced mass target experiments. Further, pertinent to fast ignition, laser accelerated fast electron divergence and transport in the experiments using warm dense matter (low temperature plasma) is characterized and explained.
机译:当前的超高功率激光器能够以受控的方式产生高能量密度(HED)等离子体,其密度大于固体密度,并且处于keV的高温(1 keV〜11,000,000°K)。在这样的极端状态下,物质对于(HED)物理学尤为有趣,例如行星和恒星天体物理学的实验室研究,激光聚变研究,脉冲中子源等。然而,迄今为止,HED等离子体中的物理学,尤其是能量传输,实现应用程序的关键,尚未被很好地理解。强激光产生的等离子体是复杂的系统,涉及两个截然不同的温度分布,并且难以通过单一方法进行建模。动力学和碰撞过程对于理解激光-固体相互作用的整个过程都同样重要。通过使用最新的单元格内粒子代码(PICLS)自洽地实现原子物理学模型(例如碰撞,电离和辐射衰减),可以探索HED等离子体中涉及的物理学。借助PICLS模拟研究了激光产生的热致密等离子体中的吸收,热电子传输和等速加热物理。尤其是,在超强激光状态下发现了一种新型的电子加速模式,即直流-脑桥加速,它在将激光能量耦合到致密等离子体中起着重要作用。在降低质量的目标实验中检查了对热电子传输和目标加热过程的几何影响。此外,与快速点火有关,对使用热致密物质(低温等离子体)的实验中激光加速的快速电子发散和传输进行了表征和解释。

著录项

  • 作者

    Mishra, Rohini.;

  • 作者单位

    University of Nevada, Reno.;

  • 授予单位 University of Nevada, Reno.;
  • 学科 Plasma physics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号