首页> 外文学位 >Geometric magnetic frustration in rare earth spinels and stuffed rare earth pyrochlores.
【24h】

Geometric magnetic frustration in rare earth spinels and stuffed rare earth pyrochlores.

机译:稀土尖晶石和填充的稀土烧绿石中的几何磁性受挫。

获取原文
获取原文并翻译 | 示例

摘要

Geometric magnetic frustration occurs when the physical arrangement of electron spins prevents the simultaneous satisfaction of all nearest neighbor interactions. Degeneracy of energetically equivalent magnetic configurations can lead to complex ordering schemes and structural distortions. This thesis focuses on the synthesis and properties of new geometrically frustrated magnets containing lattices of corner sharing tetrahedra.;The second strategy involves doping extra Ho onto the non-magnetic Ti site to form the continuous solid solution Ho2(Ti2-xHo x)O7-x/2 (0 ≤ x ≤ 0.67). The 'stuffing' of additional Ho atoms alters the original lattice of corner-sharing tetrahedra by introducing new Ho interactions through edge-sharing tetrahedra. Despite the increase of spin connectivity, the measured spin entropy remains unchanged from the parent Ho2Ti2O7 compound. It is shown that short ranged pyrochlore ordering exists in stuffed spin ice, and that the details of the local ordering are complicated. Solid solutions of the smaller rare earth titanate pyrochlores exist for Tb through Lu, and short range ordering is likely present in each of these series. Single crystal growth of stuffed spin ice and other geometrically frustrated magnets are discussed.;Pyrochlore materials with general formula A2 B2O7 possess two distinct interpenetrating sublattices of corner-sharing tetrahedra with one comprised solely of A cations and the other with B. In Ho2Ti 2O7, magnetic frustration of the Ho3+ spins on the A lattice are known to mimic the positional frustration of hydrogen atoms in water ice, and is thus termed 'spin ice.' This thesis explores two ways to chemically study the magnetic properties of spin ice. The first involves the synthesis of rare earth containing materials with the closely related spinel and olivine structures. The cubic spinel structure also contains a magnetic sublattice of corner-sharing tetrahedra. However, the local coordination around the rare earth atoms is different between spinel and pyrochlore structures. It is shown that CdLn2S4 and ZnLn2S4 (Ln = Ho-Yb) possess geometric magnetic frustration with no long range order down to 2 K, and that the potential exists for more interesting magnetic behavior at lower temperatures.
机译:当电子自旋的物理排列阻止所有最近邻相互作用的同时满足时,就会发生几何磁性受挫。能量等效的磁性构造的退化会导致复杂的排序方案和结构变形。本论文着重研究了含有角共享四面体晶格的新型几何受挫磁体的合成和性能。第二种策略是将多余的Ho掺杂到非磁性Ti位置上,形成连续的固溶体Ho2(Ti2-xHo x)O7- x / 2(0≤x≤0.67)。额外的Ho原子的“填充”通过边共享的四面体引入新的Ho相互作用,从而改变了角共享的四面体的原始晶格。尽管自旋连接性增加,但是从母体Ho2Ti2O7化合物测得的自旋熵保持不变。结果表明,填充的旋转冰中存在短程烧绿石有序,并且局部有序的细节很复杂。对于Tb到Lu,存在较小的稀土钛酸酯烧绿石的固溶体,并且在每个系列中都可能存在短程有序。讨论了填充自旋冰和其他几何受阻磁体的单晶生长。通式为A2 B2O7的烧绿石材料具有两个不同的角共享四面体互穿亚晶格,其中一个仅由A阳离子组成,另一个由B组成。在Ho2Ti 2O7中,众所周知,A晶格上Ho3 +自旋的磁化抑制作用可模仿水冰中氢原子的位置抑制作用,因此被称为“自旋冰”。本文探索了两种化学方法研究旋转冰磁性能的方法。首先涉及具有尖晶石和橄榄石结构密切相关的含稀土材料的合成。立方尖晶石结构还包含角共享四面体的磁性子晶格。但是,尖晶石和烧绿石结构之间稀土原子周围的局部配位是不同的。结果表明,CdLn2S4和ZnLn2S4(Ln = Ho-Yb)具有几何磁阻,低至2 K时没有长程有序,并且存在在较低温度下产生更有趣磁行为的潜力。

著录项

  • 作者

    Lau, Garret C.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号