首页> 外文学位 >Combining spectral and spatial information for automated plant identification.
【24h】

Combining spectral and spatial information for automated plant identification.

机译:结合光谱和空间信息进行植物自动识别。

获取原文
获取原文并翻译 | 示例

摘要

Automated plant identification has been studied for decades, with identifying weed species in a crop for targeted weed control as one of the recent major motivations. The two primary sources of information for this task have been spectral data obtained using spectroscopic methods and spatial information from images. These two approaches have only very rarely been incorporated into a single character for identification. An objective of this research was to explore approaches to combining these methods.; An imaging spectrophotometer was designed and built in order to collect the spectral-spatial data. The imaging spectrophotometer combined a spectrograph-based imager with a 1.8 m uniform light source. Illumination sources matched to the input spectrum required to collect data between 400 and 1000 nm. Spectral resolution was approximately five nanometers, with spatial resolution adequate to resolve veins on some leaves.; Data were collected from thirteen crop and weed species at five maturity levels. From these data, characters were developed from the descriptive statistics of the reflectance and reflectance red edge distribution across vegetated areas, spectrally-segmented plant structures, and leaf shape based on idealized templates.; The usefulness of these characters for classification varied. Spectrally-segmented plant structures (fleshy tissues and red stems) were very good at reducing the list of potential candidates, reliably indicating those samples exhibiting the character from those that did not. Characters based on reflectance distribution statistics (reflectance skewness at 896, 511, and 713 nm, and standard deviation at 730 and 959 nm) and red edge location and slope statistics (red edge slope skewness, slope standard deviation, and slope mean, and red edge location standard deviation and location mean) demonstrated some ability to distinguish between species, but require further development of their definition and meaning. Leaf segmentation was done using an edge subtraction approach using a 5.2 nm waveband centred at 719 nm, achieving a mean leaf segmentation rate of 63%. Leaf shape characters performed poorly in testing, primarily a result of bias in methods of combining evidence for shape. While performance was mixed, all of the prototype characters illustrate possible directions for the development of characters incorporating both spectral and spatial information.
机译:自动化植物识别已经研究了数十年,将作物中的杂草物种识别为有针对性的杂草控制是最近的主要动机之一。用于此任务的两个主要信息来源是使用光谱方法获得的光谱数据和图像中的空间信息。这两种方法很少被合并到单个字符中进行识别。这项研究的目的是探索将这些方法结合起来的方法。设计并制造了成像分光光度计,以收集光谱空间数据。成像分光光度计将基于光谱仪的成像器与1.8 m均匀光源结合在一起。照明源与收集400至1000 nm之间数据所需的输入光谱相匹配。光谱分辨率约为5纳米,空间分辨率足以分辨某些叶片上的脉。从五个成熟度级别的13种作物和杂草物种中收集数据。从这些数据中,根据理想化模板,通过对植被区,光谱分割的植物结构和叶片形状的反射率和反射率红边分布的描述性统计,得出了特征。这些字符对分类的有用性各不相同。光谱分割的植物结构(肉质组织和红色茎)在减少潜在候选物列表方面非常擅长,可以可靠地表明那些样品表现出与否。基于反射率分布统计数据(在896、511和713 nm处的反射偏度以及在730和959 nm处的标准偏差)以及红色边缘位置和斜率统计信息(红色边缘斜率偏斜度,斜率标准偏差和斜率均值以及红色)的字符边缘位置标准差和位置均值)表现出一定的区分物种的能力,但需要进一步发展其定义和含义。使用边缘相减方法使用以719 nm为中心的5.2 nm波段进行叶片分割,平均叶片分割率为63%。叶片形状特征在测试中表现不佳,主要是由于组合形状证据的方法存在偏差。虽然性能参差不齐,但所有原型字符都说明了结合光谱和空间信息的字符开发的可能方向。

著录项

  • 作者

    Noble, Scott David.;

  • 作者单位

    University of Guelph (Canada).;

  • 授予单位 University of Guelph (Canada).;
  • 学科 Engineering Agricultural.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 347 p.
  • 总页数 347
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 农业工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号