首页> 外文学位 >Enhanced ionic oxygen flow through mixed ionic-electronic conducting membranes: Directional dependence, composite construction and the partial oxidation of methane.
【24h】

Enhanced ionic oxygen flow through mixed ionic-electronic conducting membranes: Directional dependence, composite construction and the partial oxidation of methane.

机译:增强的离子氧气流经混合的离子电子导电膜:方向依赖性,复合结构和甲烷的部分氧化。

获取原文
获取原文并翻译 | 示例

摘要

Mixed Ionic-Electronic Conducting (MIEC) membranes transport ions and electrons in a crystalline matrix. Ionic transport occurs through MIEC materials in the presence of an applied ionic potential gradient. MIEC membranes form a special class of ionic conductors with primary applications as membrane separators, sensors, and components in solid oxide fuel cells.; Current efforts focus on separation of oxygen from air for supply to high temperature reactions. One such reaction is the methane partial oxidation to synthesis gas (CO and H2). Certain MIEC membrane characteristics are required for a methane partial oxidation reactor: (1) the cost of the material must be economical on a tube cost per mol oxygen transported basis; (2) the membrane must be stable in steep oxygen partial pressure gradients and in the presence of reducing gases; (3) the membrane must be stable at temperatures exceeding 800°C without fracturing due to thermal stress.; Two mechanisms govern the transport of oxygen through MIEC membranes: surface exchange at the MIEC/gas surface and ionic transport through the MIEC bulk. Most MIEC membranes conduct oxygen with a mixed transport mechanism, i.e., both surface exchange and bulk diffusion affect the total transport. We investigate the relative importance of bulk diffusion versus surface exchange in MIEC tubular and disk membranes made of La0.5Sr0.5Fe 0.8Ga0.2O3-delta.; We propose a proof based on the currently accepted transport model for the directional dependence of ionic flow through a tubular MIEC. We qualitatively confirm directional dependence using a novel experimental system. Further, we propose a model for ionic flow in a composite membrane system consisting of a dense, tubular LSFG substrate with a thin, dense layer of SrCox Fe1-xO3-delta applied to the surface(s). Comparisons are made between the performance of the monolithic membrane tube and the layered composite membrane tube. A layered composite tubular membrane is constructed and tested for ionic flow performance in this work. We also collect data for ionic flow through a dense tubular membrane with a 5-10 A film of platinum sputtered onto the surface. In addition, we obtain data for ionic flow at pressures exceeding 3 atm.
机译:混合离子电导(MIEC)膜在晶体基质中传输离子和电子。在存在施加的离子电势梯度的情况下,离子迁移通过MIEC材料发生。 MIEC膜形成一类特殊的离子导体,主要用作膜分离器,传感器和固体氧化物燃料电池中的组件。当前的努力集中于从空气中分离氧气以供应给高温反应。一种这样的反应是甲烷部分氧化成合成气(CO和H2)。甲烷部分氧化反应器需要某些MIEC膜特性:(1)材料成本必须以每摩尔氧气输送管的成本为基础是经济的; (2)膜必须在陡峭的氧气分压梯度和还原性气体存在的情况下保持稳定; (3)膜必须在超过800°C的温度下保持稳定,且不会因热应力而破裂;有两种机制控制氧气通过MIEC膜的传输:MIEC /气体表面的表面交换和通过MIEC本体的离子传输。大多数MIEC膜通过混合的传输机制传导氧气,即表面交换和整体扩散都会影响总传输。我们研究了由La0.5Sr0.5Fe0.8Ga0.2O3-δ制成的MIEC管状和圆盘膜中本体扩散与表面交换的相对重要性。我们提出基于当前接受的传输模型的证明,用于证明通过管状MIEC的离子流的方向依赖性。我们使用新型实验系统定性地确定方向依赖性。此外,我们提出了一种复合膜系统中离子流的模型,该复合膜系统由致密的管状LSFG基底组成,该基底具有施加到表面的SrCox Fe1-xO3-delta致密薄层。比较了整体式膜管和层状复合膜管的性能。构建层状复合管状膜并在这项工作中测试离子流性能。我们还收集离子流经致密的管状膜的数据,该膜具有5-10 A的铂膜溅射到表面上。此外,我们获得了压力超过3 atm时离子流的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号