首页> 外文学位 >Part I: Fabrication and surface modification of composite biomaterials based on silicon and calcium disilicide. Part II: Synthesis and characterization of erbium doped silicon nanocrystals encapsulated by aluminum and zinc oxides.
【24h】

Part I: Fabrication and surface modification of composite biomaterials based on silicon and calcium disilicide. Part II: Synthesis and characterization of erbium doped silicon nanocrystals encapsulated by aluminum and zinc oxides.

机译:第一部分:基于硅和钙二硅化物的复合生物材料的制备和表面改性。第二部分:铝和氧化锌包裹的掺ped硅纳米晶体的合成与表征。

获取原文
获取原文并翻译 | 示例

摘要

A dry-etch spark ablation method was used to produce porous silica (SiO2/Si) and calcium disilicide (CaSi2/Si) layers on silicon (Si) surfaces for the electrochemical growth of apatitic phosphates (CaP). Both SiO2/Si and CaSi2/Si composite electrodes readily calcify in vitro under the application of a small electric potential, and with proper treatment the electrodeposition of CaP is localized to the sparked areas. Porous SiO2 films can also be fabricated via a guided ablation technique and subsequently produce patterns of CaP on Si. In addition to increasing the local concentration of Ca 2+, interfacial layers of CaSi2 on Si exhibit exceptional site-selectivity towards CaP formation under bias due to the difference in conductivity between Si and CaSi2. The proposed mechanism for bias-assisted biomineralization of CaSi2/Si layers on spark-processed Si accounts for the physicochemical properties of deposited CaP films. This work also describes routes to surface modification of calcified composite electrodes with medicinally relevant compounds such as alendronate and norfloxacin. To assess the suitability of this material as an antibiotic delivery platform, release of the latter compound was also monitored as a function of time.; Next, biomineralization of CaSi2/Si layers on Si surfaces under zero bias was followed by means of Scanning Electron Microscopy (SEM), X-Ray Energy Dispersive Analysis (EDX), and Raman spectroscopy. CaSi2/Si wafers are bioinert at 25°C and bioactive at 37°C. Mechanistic insights regarding biomineralization were derived from an analysis of film growth morphology and chemical composition after various soaking periods in standard SBF. Changes in CaSi2 calcification behavior as a function of reaction temperature and pH, SBF concentration, and various surface modification processes were also employed for this purpose.; A separate part of this work deals with rare earth-doped Si nanocrystals. Photoexcited erbium-doped silicon nanocrystals (Er/Si-NCs) emit at 1.54 mum, the wavelength of light which is the most compatible with existing silica-based fiber optics. Several selective surface modification reactions with inorganic capping layers comprised of either aluminum or zinc oxide were analyzed in an attempt to improve the photoluminescence (PL) efficiency of these nanocrystals by reducing interfacial defect density. (Abstract shortened by UMI.)
机译:干蚀刻火花烧蚀方法用于在硅(Si)表面上生产多孔二氧化硅(SiO2 / Si)和二硅化钙(CaSi2 / Si)层,以进行磷酰磷(CaP)的电化学生长。在很小的电势下,SiO2 / Si和CaSi2 / Si复合电极都易于在体外钙化,经过适当的处理,CaP的电沉积位于发火花的区域。多孔SiO2膜也可以通过引导烧蚀技术制造,然后在Si上产生CaP图案。除了增加Ca 2+的局部浓度外,由于Si和CaSi2之间的电导率不同,在偏压下,Si上的CaSi2界面层还表现出对CaP形成的出色位选择性。所提出的在火花处理的硅上进行CaSi2 / Si层的偏压辅助生物矿化的机制解释了所沉积的CaP膜的物理化学性质。这项工作还描述了用医学上相关的化合物(如阿仑膦酸盐和诺氟沙星)对钙化复合电极进行表面改性的途径。为了评估这种材料作为抗生素递送平台的适用性,还监测了后者化合物的释放随时间的变化。接下来,通过扫描电子显微镜(SEM),X射线能量色散分析(EDX)和拉曼光谱法,在零偏压下在Si表面上的CaSi2 / Si层进行生物矿化。 CaSi2 / Si晶片在25°C时具有生物惰性,在37°C时具有生物活性。有关生物矿化的机理见解来自对标准SBF中浸泡了多个时间后的薄膜生长形态和化学成分的分析。 CaSi2钙化行为随反应温度,pH,SBF浓度和各种表面改性过程的变化也用于此目的。这项工作的另一部分涉及稀土掺杂的Si纳米晶体。光激发的掺-硅纳米晶体(Er / Si-NCs)发出1.54微米的光,该波长与现有的基于二氧化硅的光纤最兼容。分析了几种由铝或氧化锌组成的无机覆盖层的选择性表面改性反应,以试图通过降低界面缺陷密度来提高这些纳米晶体的光致发光(PL)效率。 (摘要由UMI缩短。)

著录项

  • 作者

    Seregin, Vladimir Victor.;

  • 作者单位

    Texas Christian University.;

  • 授予单位 Texas Christian University.;
  • 学科 Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号