首页> 外文学位 >Microscale electrokinetic sample stacking.
【24h】

Microscale electrokinetic sample stacking.

机译:微型电动样品堆叠。

获取原文
获取原文并翻译 | 示例

摘要

One key challenge, yet to be addressed by miniaturized bioanalytical devices, is the detection of analytes with nanomolar or lower initial concentrations in volumes of one microliter or less. This dissertation focuses on implementation and optimization of robust electrokinetic sample preconcentration methods to improve detection sensitivity of microscale electrophoresis systems.; We present a theoretical and experimental study of a preconcentration technique called field amplified sample stacking (FASS). FASS process is modelled as electromigration, diffusion, and advection of two background electrolyte ions and multiple sample species across a known initial concentration gradient. Regular perturbation methods and a generalized Taylor dispersion analysis are used to derive area-averaged species conservation and electric field equations. The model predictions are validated using on-chip FASS experiments. An acidified poly(ethylene oxide) (PEO) coating is used to minimize dispersion due to electroosmotic flow (EOF), and thereby evaluate the low (but finite) dispersion regime of most interest. CCD-based, quantitative, epi-fluorescence imaging is used to quantify unsteady concentration fields and validate the model. This experimentally validated model is useful in developing optimal designs of sample stacking assay devices.; In FASS, under certain conditions (e.g., sample prepared in DI water), sample ion concentration can be on the order of BGE. In these cases, sample ions can strongly affect conductivity gradients. A three-ion electromigration model is presented to investigate such cases. The model predicts two distinct regimes of concentration enhancement. The first regime is characterized by a rarefaction wave for the sample ion distribution with a final concentration enhancement which is greater than the background-to-sample solution conductivity ratio, gamma. In the second regime, the sample ion concentration wave steepens toward an ion concentration shock wave, and maximum concentration enhancement is less than gamma.; We also describe the implementation of on-chip isotachophoresis (ITP): a sample preconcentration technique based on the differences in mobility of buffer ions and sample ions. We have developed a robust and repeatable flow control method to achieve greater than 20,000-fold increase in sample concentration using this technique. Such high-performance stacking methods could lead to the development of cheap and portable electrochemical detection-based integrated microscale electrophoresis devices.
机译:小型生物分析设备尚未解决的一个关键挑战是检测纳摩尔浓度或更低的初始浓度(在一微升或更少)的分析物。本文着重于改进健壮的电动样品预富集方法的实施和优化,以提高微型电泳系统的检测灵敏度。我们介绍了一种称为场放大样品堆叠(FASS)的预浓缩技术的理论和实验研究。 FASS过程建模为两个背景电解质离子和多个样品物种在已知初始浓度梯度上的电迁移,扩散和对流。使用常规的摄动方法和广义泰勒色散分析来推导面积平均的物种守恒和电场方程。使用片上FASS实验验证了模型预测。酸化的聚环氧乙烷(PEO)涂层用于最小化由于电渗流(EOF)引起的分散,从而评估最受关注的低(但有限)分散方式。基于CCD的定量落射荧光成像用于量化不稳定浓度场并验证模型。经过实验验证的模型可用于开发样品堆叠测定装置的最佳设计。在FASS中,在某些条件下(例如,在去离子水中制备的样品),样品离子浓度可能约为BGE。在这些情况下,样品离子会严重影响电导率梯度。提出了三离子电迁移模型来研究这种情况。该模型预测了两种不同的浓度增强方案。第一方案的特征在于用于样品离子分布的稀疏波具有最终浓度增强,该最终浓度增强大于背景样品溶液电导率比γ。在第二方案中,样品离子浓度波向离子浓度冲击波变陡,并且最大浓度增强小于γ。我们还描述了片上等速电泳(ITP)的实现:一种基于缓冲离子和样品离子迁移率差异的样品预浓缩技术。我们已经开发出一种健壮且可重复的流量控制方法,使用该技术可使样品浓度增加超过20,000倍。这种高性能的堆叠方法可能会导致廉价和便携式基于电化学检测的集成微型电泳设备的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号