首页> 外文学位 >Ignition properties of multilayer nanoscale reactive foils and the properties of metal-ceramic joints made with the same.
【24h】

Ignition properties of multilayer nanoscale reactive foils and the properties of metal-ceramic joints made with the same.

机译:多层纳米级反应性箔的点火性能以及用其制成的金属陶瓷接头的性能。

获取原文
获取原文并翻译 | 示例

摘要

A novel method for joining metals and ceramics using an Al-(Ni-7V) reactive multilayer foil as a heat source was studied. The components in the joint are first pre-wet or pre-metallized with a solder or braze before the reactive foil is placed between them and reacted, melting the solder or braze. On cooling, a solid joint is formed. It was shown using a SiC-Ti joint system that for a given joint system, there is are critical values for the foil's heat of reaction and total heat below which the braze in the joint will not melt, with foil heat of reaction having more of an impact than total heat. Experimental results from Al-Al and Al2O3-Al2O3 joint systems showed that the interface between the solder and the joint component can play a critical role in determining joint strength. Experimental results and numerical predictions using Al-Al2O3 and Al-glass joint systems showed that the elastic strain energy (ESE) and residual stress in a metal-ceramic reactive foil have two sources: The bending, caused by the uneven thermal profile across each joint component created by the reacting foil, that the joint components undergo while the solder or braze is molten and which is locked in when the solder or braze solidifies, and uneven average thermal contraction between the two components. The distribution of elastic strain energy and stress in a reactive foil joint is determined by the thermal diffusivities and coefficients of thermal expansion of the two joint components.; The ignition requirements of reactive foils were investigated using two experimental methods, an electric pulse and mechanical stab detonation, and a numerical simulation of the electric pulse ignition method. Experimental results and numerical predictions showed that increasing foil bilayer or increasing intermixed layer thickness will make a foil more difficult to ignite. An estimated energy density of 1GJ/m3 was found experimentally to be an upper limit of the minimum energy density required for ignition of a 1:1 molar ratio Al-(Ni-7V) reactive foil with 50nm bilayers and a 2.25nm intermixed layer thickness. An autoignition temperature of approximately 419K was found using both experimental results and numerical predictions, both of which accounted for heat spreading during an ignition attempt.
机译:研究了一种使用Al-(Ni-7V)反应性多层箔作为热源的金属和陶瓷结合的新方法。在将活性箔放置在接头之间并进行反应之前,首先将焊缝中的组件预润湿或用焊料或铜焊金属化,从而使焊料或铜焊融化。冷却时,形成实心接头。使用SiC-Ti接头系统表明,对于给定的接头系统,箔的反应热和总热量存在临界值,低于此值,接头中的钎料将不会熔化,而箔的反应热具有更多的比总热量影响更大。 Al-Al和Al2O3-Al2O3接头系统的实验结果表明,焊料和接头组件之间的界面在确定接头强度方面起着至关重要的作用。使用Al-Al2O3和Al-玻璃接缝系统的实验结果和数值预测表明,金属陶瓷反应性箔中的弹性应变能(ESE)和残余应力有两个来源:弯曲,是由于每个接缝处不均匀的热分布引起的由反应性箔产生的成分,在焊料或钎料熔化时,接合的成分会经历;当焊料或钎料凝固时,它们会被锁定,并且两个成分之间的平均热收缩不均匀。反应箔接头中的弹性应变能和应力的分布取决于两个接头部件的热扩散率和热膨胀系数。反应性箔的着火要求使用两种实验方法进行了研究:电脉冲和机械刺爆,以及电脉冲着火方法的数值模拟。实验结果和数值预测表明,增加箔双层或增加混合层的厚度将使箔更难以点燃。实验发现,估计的能量密度为1GJ / m3,这是点燃具有1:1摩尔比的Al-(Ni-7V)反应性箔(厚度为50nm双层且混合层厚度为2.25nm)所需的最小能量密度的上限。使用实验结果和数值预测发现自燃温度约为419K,这两者都说明了点火尝试期间的热量扩散。

著录项

  • 作者

    Spey, Stephen John, Jr.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号