首页> 外文学位 >Understanding electric field-enhanced transport for the measurement of nanoparticles and their assembly on surfaces.
【24h】

Understanding electric field-enhanced transport for the measurement of nanoparticles and their assembly on surfaces.

机译:了解用于纳米颗粒及其表面组装的电场增强传输。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this dissertation is to understand the synthesis, characterization, and integration of nanoparticles and nanoparticle-based devices by electric field-enhanced transport of nanoparticles. Chapter I describes the factors used for determining particle trajectories and found that electric fields provide the directional electrostatic force to overcome other non-directional influences on particle trajectories. This idea is widely applied in the nanoparticle classification, characterization, and assembly onto substrate surfaces as investigated in the following chapters.;Chapter 2 presents a new assembly method to position metal nanoparticles delivered from the gas phase onto surfaces using the electrostatic force generated by biased p-n junction patterned substrates. Aligned deposition patterns of metal nanoparticles were observed, and the patterning selectivity quantified. A simple model accounting for the generated electric field, and the electrostatic, van der Waals, and image forces was used to explain the observed results. Chapter 2.2 describes a data set for particle size resolved deposition, from which a Brownian dynamics model for the process can be evaluated. Brownian motion and fluid convection of nanoparticles, as well as the interactions between the charged nanoparticles and the patterned substrate, including electrostatic force, image force and van der Waals force, are accounted for in the simulation. Using both experiment and simulation the effects of the particle size, electric field intensity, and the convective flow on coverage selectivity have been investigated. Coverage selectivity is most sensitive to electric field, which is controlled by the applied reverse bias voltage across the p-n junction. A non-dimensional analysis of the competition between the electrostatic and diffusion force is found to provide a means to collapse a wide range of process operating conditions and an effective indicator or process performance. Directed assembly of size-selected nanoparticles has been applied in the study of nanoparticle enhanced fluorescence (NEF) bio-sensing devices.;Chapter 3 presents results of a systematic examination of funct onalized gold nanoparticles by electrospray-differential mobility analysis (ES-DMA). Formation of selfassembled monolayers (SAMs) of alkylthiol molecules and singly stranded DNA (ssDNA) on the Au-NP surface was detected from a change in particle mobility, which could be modeled to extract the surface packing density. A gas-phase temperature-programmed desorption (TPD) kinetic study of SAMs on the Au-NP found the data to be consistent with a second order Arrhenius based rate law, yielding an Arrhenius-factor of 1×1011s -1 and an activation energy ∼105 kJ/mol. This study suggests that the ES-DMA can be added to the tool set of characterization methods being employed and developed to study the structure and properties of coated nanoparticles.;Chapter 3.2 demonstrates this ES-DMA as a new method to investigate colloidal aggregation and the parameters that govern it. Nanoparticle suspensions were characterized by sampling a Au nanoparticle (Au-NP) colloidal solution via electrospray (ES), followed by differential ion-mobility analysis (DMA) to determine the mobility distribution, and thus the aggregate distribution. By sampling at various times, the degree of flocculation and the flocculation rate are determined and found to be inversely proportional to the ionic strength and proportional to the residence time. A stability ratio at different ionic strengths, the critical concentration, and surface potential or surface charge density of Au-NPs are obtained from these data. This method should be a generically useful tool to probe the early stages of colloidal aggregation.;Study of ES-DMA is extended to include the characterizations of a variety of materials. Biologically interested materials such as viruses and antibodies could also be characterized. These results show ES-DMA provides a general way to characterize the colloidal materials as well as aerosolized particles.
机译:本文的目的是通过电场增强的纳米粒子的传输来了解纳米粒子和基于纳米粒子的装置的合成,表征和集成。第一章描述了用于确定粒子轨迹的因素,并发现电场提供了方向性的静电力,以克服对粒子轨迹的其他非方向性的影响。如以下各章中所研究的,该思想被广泛应用于纳米颗粒的分类,表征和在基底表面上的组装。第2章介绍了一种新的组装方法,该方法通过利用由偏压产生的静电力将从气相输送的金属纳米颗粒定位在表面上pn结图案的基板。观察到排列的金属纳米颗粒的沉积图案,并量化了图案选择性。一个简单模型解释了所产生的电场,以及静电,范德华力和镜像力,用于解释观察到的结果。第2.2章介绍了用于粒度解析沉积的数据集,从中可以评估该过程的布朗动力学模型。模拟中考虑了纳米粒子的布朗运动和流体对流,以及带电的纳米粒子和图案化基板之间的相互作用,包括静电力,像力和范德华力。通过实验和模拟,研究了粒径,电场强度和对流对覆盖选择性的影响。覆盖选择性对电场最敏感,这是由跨p-n结施加的反向偏置电压控制的。发现对静电力和扩散力之间的竞争进行了无量纲分析,从而提供了一种手段,可以使大范围的过程操作条件和有效的指标或过程性能崩溃。尺寸选择的纳米颗粒的定向组装已被用于研究纳米颗粒增强的荧光(NEF)生物传感设备。;第3章介绍了通过电喷雾差分迁移率分析(ES-DMA)对功能化金纳米颗粒进行系统检查的结果。从颗粒迁移率的变化中检测到烷基硫醇分子和单链DNA(ssDNA)的烷基硫醇分子的自组装单层(SAMs)的形成,可以对其建模以提取表面堆积密度。在Au-NP上进行SAM的气相程序升温脱附(TPD)动力学研究发现,该数据与基于二阶Arrhenius的速率定律一致,得出Arrhenius因子为1×1011s -1和活化能约105 kJ / mol。这项研究表明,可以将ES-DMA添加到正在使用的表征方法的工具集中,并开发用于研究包覆纳米颗粒的结构和性能。;第3.2章演示了这种ES-DMA作为研究胶体聚集和降解的新方法。控制它的参数。纳米颗粒悬浮液的特征在于,通过电喷雾(ES)对金纳米颗粒(Au-NP)胶体溶液进行采样,然后进行差分离子迁移率分析(DMA)以确定迁移率分布,从而确定聚集体分布。通过在不同时间采样,可以确定絮凝程度和絮凝速率,并发现其与离子强度成反比,与停留时间成反比。从这些数据获得Au-NP在不同离子强度,临界浓度和表面电势或表面电荷密度下的稳定性比。该方法应该是探测胶体聚集早期阶段的通用工具。; ES-DMA的研究已扩展到包括各种材料的表征。对生物学感兴趣的材料,例如病毒和抗体,也可以进行表征。这些结果表明,ES-DMA提供了表征胶体材料以及雾化颗粒的一般方法。

著录项

  • 作者

    Tsai, De-Hao.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Chemical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号