首页> 外文学位 >Inertial electrostatic confinement: Theoretical and experimental studies of spherical devices.
【24h】

Inertial electrostatic confinement: Theoretical and experimental studies of spherical devices.

机译:惯性静电约束:球形装置的理论和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

Inertial Electrostatic Confinement (IEC) is a means to confine ions for fusion purposes with electrostatic fields in a converging geometry. Its engineering simplicity makes it appealing when compared to magnetic confinement devices. It is hoped that such a device may one day be a net energy producer, but it has near term applications as a neutron generator. We study spherical IECs (SIECs), both theoretically and experimentally. Theoretically, we compute solutions in the free molecular limit and map out regions in control parameter space conducive to the formation of double potential wells. In addition, several other observables are mapped in the control parameter space. Such studies predict the threshold for the phenomena of "core splitting" to occur when the fractional well depth (FWD) is ∼70%-80%. With respect to double potential wells, it is shown that an optimal population of electrons exists for double well formation. In addition, double well depth is relatively insensitive to space charge spreading of ion beams.;Glow discharge devices are studied experimentally with double and single Langmuir probes. The postulated micro-channeling phenomenon is verified with density measurements along a micro-channel and along the radius where micro-channels are absent. In addition, the measurements allow an evaluation of the neutrality of micro-channels and the heterogeneous structure of "Star Mode". It is shown that, despite visual evidence, micro-channeling persists well into "Jet" mode. In addition, the threshold for the "Star" mode to "Jet" mode transition is obtained experimentally. The studies have revealed new techniques for estimating tangential electric field components and studying the focusing of ion flow.
机译:惯性静电限制(IEC)是一种将离子聚变的目的,与会聚几何形状中的静电场一起限制的手段。与磁性限制装置相比,它的工程简单性使其具有吸引力。希望这样的设备有一天可以成为一个净能源生产者,但是它在短期内可以用作中子发生器。我们在理论和实验上研究球形IEC(SIEC)。从理论上讲,我们计算自由分子极限中的解并绘制出控制参数空间中有利于形成双势阱的区域。另外,在控制参数空间中映射了其他几个可观察对象。这些研究预测,当分数井深(FWD)约为70%-80%时,发生“岩心分裂”现象的阈值。关于双势阱,表明存在用于双阱形成的最佳电子种群。此外,双阱深度对离子束的空间电荷扩散相对不敏感。;辉光放电装置是用双朗格探针和单朗格缪尔探针进行实验研究的。通过沿微通道和不存在微通道的半径的密度测量来验证假定的微通道现象。另外,这些测量值可以评估微通道的中立性和“星型”的异构结构。结果表明,尽管有视觉证据,微通道仍能很好地持续进入“喷射”模式。另外,通过实验获得了从“星形”模式到“喷射”模式过渡的阈值。这些研究揭示了估算切向电场分量和研究离子流聚焦的新技术。

著录项

  • 作者

    Meyer, Ryan.;

  • 作者单位

    University of Missouri - Columbia.;

  • 授予单位 University of Missouri - Columbia.;
  • 学科 Engineering Nuclear.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 236 p.
  • 总页数 236
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子能技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号