首页> 外文学位 >Design and tuning of fuzzy PID controllers for multivariable process systems.
【24h】

Design and tuning of fuzzy PID controllers for multivariable process systems.

机译:多变量过程系统的模糊PID控制器的设计和调整。

获取原文
获取原文并翻译 | 示例

摘要

Multivariable processes are often found in many industries such as chemical, refinery; and aerospace. The complex and nonlinear nature of multi-input and multi-output (MIMO) systems makes multivariable control a challenging task. Multivariable control become difficult in the presence of loop interactions where different control loops in the multivariable system exhibits coupled behavior in the control variables. When the multivariable system is broken into several single-input-single-output (SISO) control systems, the individual control loops can be characterized by equal number of SISO control problems. However, when interactions exists, an individual control loop will be affected by more than one control variable in the multivariable system. Therefore design of MIMO control systems is often a challenging research area in the area of multivariable control.;There are many multivariable control techniques which have been developed to address the above issues, including advanced multivariable control techniques such as model predictive control. Among them, proportional integral derivative (PID) control has been the most common in industries. Application of fuzzy logic for control problems have been shown to improve overall performance significantly. Although there are many applications related to SISO based fuzzy PID systems, the application and design of fuzzy PID systems for multivariable systems are less common. The adaptive and nonlinear nature of fuzzy control allows fuzzy PID systems to handle nonlinear systems more efficiently than using linear PID controllers.;The objective of this thesis is to develop a technique to design and tune PID type fuzzy controllers for multivariable process systems. In this work, the standard additive model (SAM) based fuzzy system is selected to design the rule base. The SAM inference system follows a special volume and centroid of membership based technique for defuzzification. A nonlinearity study has been performed to show the advantages of using a SAM based inference system against traditional min-max-gravity based inference systems. The SAM system is implemented on two fuzzy PID (FPID) systems. FPID type I is designed using Mamdani's style FPID system and constitute coupled rules to define the overall FPID output. FPID type II is designed using a rule decoupled system, in which each PID action is described using a separate rule base.;FPID tuning is performed using the two-level tuning principle where the overall tuning is decomposed into two tuning levels, low-level and high-level. The low-level tuning is dedicated to devise linear gain parameters in the FPID system where as the high-level tuning is dedicated to adjust the fuzzy rule base parameters. The lowlevel tuning method adopts a novel linear tuning scheme for general decoupled PID controllers and the high-level tuning adopts a heuristic based method to change the nonlinearity in the fuzzy output.;The stability analysis using Nyquist array and Gershgorin band proves the robustness of the proposed method. The stability criterion is performed to define the hard limits for nonlinear tuning variables in the SAM system. The proposed FPID tuning technique guarantees the stability of the MIMO control system.;The applicability of the proposed methods in this research is demonstrated through several control simulations and real-time experiments. The results show FPID systems able to handle such a complex system more robustly than using linear systems and also the experiments validated the design method proposed in this thesis.
机译:多变量过程通常在许多行业中找到,例如化学,炼油;和航空航天。多输入多输出(MIMO)系统的复杂和非线性特性使多变量控制成为一项艰巨的任务。在多变量系统中不同的控制回路在控制变量中表现出耦合行为的情况下,在回路交互作用下,多变量控制变得困难。当将多变量系统分解为几个单输入单输出(SISO)控制系统时,各个控制回路可能会受到相同数量的SISO控制问题的影响。但是,当存在相互作用时,单个控制回路将受到多变量系统中多个控制变量的影响。因此,MIMO控制系统的设计通常是多变量控制领域中具有挑战性的研究领域。;已经开发出许多解决上述问题的多变量控制技术,包括诸如模型预测控制之类的高级多变量控制技术。其中,比例积分微分(PID)控制已成为行业中最常见的控制方式。模糊逻辑在控制问题中的应用已显示出可显着提高整体性能。尽管有很多与基于SISO的模糊PID系统相关的应用,但是模糊PID系统在多变量系统中的应用和设计却很少见。模糊控制的自适应和非线性特性使模糊PID系统比使用线性PID控制器能更有效地处理非线性系统。本论文的目的是开发一种用于多变量过程系统的PID型模糊控制器的设计和调试技术。在这项工作中,选择基于标准加性模型(SAM)的模糊系统来设计规则库。 SAM推理系统遵循基于成员资格的特殊卷和质心进行去模糊化的技术。进行了非线性研究,以显示使用基于SAM的推理系统相对于基于传统的基于最小-最大重力的推理系统的优势。 SAM系统在两个模糊PID(FPID)系统上实现。 FPID I类型是使用Mamdani风格的FPID系统设计的,并构成了耦合规则以定义整体FPID输出。 FPID类型II是使用规则解耦系统设计的,其中每个PID操作均使用单独的规则库进行描述; FPID调整是使用两级调整原理执行的,其中将整体调整分解为两个调整级别,即低级别和高级。低级调整专用于在FPID系统中设计线性增益参数,而高级调整专用于调整模糊规则库参数。低层整定方法对通用解耦PID控制器采用新颖的线性整定方案,高层整定采用基于启发式的方法来改变模糊输出中的非线性。;使用Nyquist阵列和Gershgorin频带的稳定性分析证明了稳健性建议的方法。执行稳定性标准以定义SAM系统中非线性调整变量的硬限制。所提出的FPID调整技术保证了MIMO控制系统的稳定性。通过几种控制仿真和实时实验证明了所提出方法在本研究中的适用性。结果表明,FPID系统能够比使用线性系统更强大地处理这种复杂系统,并且实验验证了本文提出的设计方法。

著录项

  • 作者

    Harinath, Eranda.;

  • 作者单位

    Memorial University of Newfoundland (Canada).;

  • 授予单位 Memorial University of Newfoundland (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.Eng.
  • 年度 2007
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号