首页> 外文学位 >Near real-time precise orbit determination of low Earth orbit satellites using an optimal GPS triple-differencing technique.
【24h】

Near real-time precise orbit determination of low Earth orbit satellites using an optimal GPS triple-differencing technique.

机译:使用最佳GPS三重差动技术近地实时精确地确定低地球轨道卫星。

获取原文
获取原文并翻译 | 示例

摘要

During the last decade, numerous Low Earth Orbit (LEO) satellites, including TOPEX/POSEIDON, CHAMP and GRACE, have been launched for scientific purposes at altitudes ranging from 400 km to 1300 km. Because of highly complex dynamics of their orbits, coming from the Earth gravity field and the atmospheric drag, accurate and fast LEO orbit determination has been a great research challenge, especially for the lowest altitudes. To support GPS meteorology that requires an accurate orbit in near realtime, efficient LEO orbit determination methods were developed using the triple-differenced GPS phase observations, as presented in this dissertation. These methods include the kinematic, dynamic, and reduced-dynamic approach based on the wave algorithm.; To test the developed algorithms, 24 hours of CHAMP data on February 15, 2003, which amounts to 15 revolutions, were used for each method. The EIGEN2 geopotential model was used with degree and order up to 120. Precise IGS orbits are used for the GPS satellites, and 43 IGS ground tracking stations were chosen using the algorithm developed in this study, based on the network optimization theory.; The estimated orbit solutions were compared with the published Rapid Science Orbit (RSO) and the consistency testing was performed for the dynamic solution. In addition to the comparison with other orbit solutions, the SLR residuals were also computed as an independent validation of the methods presented here.; The kinematic orbit solution depends on the satellite geometry and data quality. The absolute kinematic positioning solution, with an RMS error of +/-26 meters in 3D, was used as an initial approximation for the kinematic orbit determination. Because of the inaccuracy of the initial approximated orbit, there is a bias up to a few hundred epochs in the kinematic solution. This bias is effectively removed with the backward filter by fixing the last epoch from the forward filter solution. After the forward and backward filtering, the kinematic approach shows accuracy better than +/-20 cm in 3D RMS for a half day arc compared to the reference RSO.; The dynamic approach requires careful modeling of the atmospheric drag force which is the most dominant nonconservative force at LEO's altitude. In addition, the empirical force modeling, which is similar to the stochastic process noise in the reduced-dynamic approach, absorbs most of the remaining unmodeled forces. The two frequencies of the empirical forces, that is, once- and twice-per-revolution, are modeled in this study. (Abstract shortened by UMI.)
机译:在过去的十年中,包括TOPEX / POSEIDON,CHAMP和GRACE在内的许多低地球轨道(LEO)卫星已在400 km至1300 km的海拔范围内发射用于科学目的。由于它们的轨道动力学非常复杂,来自地球重力场和大气阻力,因此准确,快速的LEO轨道确定一直是一项巨大的研究挑战,尤其是在最低海拔的情况下。为了支持需要近乎实时的精确轨道的GPS气象学,本文采用三差分GPS相位观测技术开发了有效的LEO轨道确定方法。这些方法包括基于波动算法的运动学,动态和简化动力学方法。为了测试开发的算法,每种方法都使用了2003年2月15日的24小时CHAMP数据(共15圈)。 EIGEN2地势模型的阶次最高为120。精确的IGS轨道用于GPS卫星,并基于网络优化理论,使用本研究开发的算法选择了43个IGS地面跟踪站。将估算的轨道解决方案与已发布的快速科学轨道(RSO)进行比较,并对动态解决方案进行一致性测试。除了与其他轨道解决方案进行比较之外,还对SLR残差进行了计算,作为此处介绍的方法的独立验证。运动轨道解决方案取决于卫星的几何形状和数据质量。绝对运动学定位解决方案在3D中的RMS误差为+/- 26米,被用作运动轨迹确定的初始近似值。由于初始近似轨道的不准确性,在运动学解中存在多达几百个历元的偏差。通过固定前向滤波器解决方案中的最后一个时期,可以使用后向滤波器有效消除此偏差。经过正向和反向滤波后,与参考RSO相比,运动学方法在半天弧内的3D RMS精度优于+/- 20 cm。动态方法需要仔细模拟大气阻力,这是LEO高度上最主要的非保守力。此外,经验力建模类似于降动力方法中的随机过程噪声,它吸收了大多数剩余的未建模力。在此研究中建立了经验力的两个频率,即每转一次和两次。 (摘要由UMI缩短。)

著录项

  • 作者

    Bae, Tae-Suk.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Geodesy.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 大地测量学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号