首页> 外文学位 >Process modeling for solidification microstructure and transient thermal stresses in laser aided DMD process.
【24h】

Process modeling for solidification microstructure and transient thermal stresses in laser aided DMD process.

机译:激光辅助DMD工艺中凝固组织和瞬态热应力的工艺建模。

获取原文
获取原文并翻译 | 示例

摘要

Despite enormous progress in Laser Aided Direct M aterial Deposition (DMD) process adverse effects of process parameters on variety of properties and microstructure have been reported. De-bonding at substrate-deposition interface and cracking in deposited layers are a few that occur due to excessive stress build-up. Very high heating and cooling rates are inherent to this process. Consequently, the effects of solid state phase transformations cannot be neglected. A complete model that provides a quantitative relationship between process parameters, phase transformation kinetics, solidification parameters, thermal stresses and microstructure is highly desirable. This research deals with four key aspects of laser aided DMD process. First, effect of solid state phase transformation on thermal stresses. Second, influence of high cooling rates on solidification microstructure at the scale of primary and secondary dendrite arm spacing. Third, effect of deposition patterns on both thermal stresses and solidification microstructure. And fourth, development of a fully coupled temperature-stress/strain field model. Finite Element (FE) results indicate a drastic change in stress states with the inclusion of phase transformation. FE modeling of various deposition patterns (raster zigzag, spiral in-to-out and spiral out-to-in) illustrates their significant effect on both thermal stresses and solidification microstructure. Two different models are proposed as per metallo-thermo-mechanical theory. While the first model is based on sequentially coupled temperature-phase transformation-stress fields, the second model is based on fully coupled temperature-stress fields. In a study of single layer deposition of H13 tool steel on mild steel substrate, nodal points at the top of deposited material that had highest element deformations showed a marginal disparity between the two models.
机译:尽管在激光辅助直接材料沉积(DMD)工艺中取得了巨大进步,但已经报道了工艺参数对各种性能和微观结构的不利影响。由于过度的应力积累,在衬底与沉积界面处的脱键和沉积层中的裂纹很少发生。此过程固有很高的加热和冷却速率。因此,固态相变的影响不可忽略。非常需要一个完整的模型,该模型提供工艺参数,相变动力学,凝固参数,热应力和微观结构之间的定量关系。这项研究涉及激光辅助DMD工艺的四个关键方面。首先,固态相变对热应力的影响。第二,高冷却速率对初生和次生枝晶臂间距尺度下凝固组织的影响。第三,沉积方式对热应力和凝固组织的影响。第四,开发完全耦合的温度-应力/应变场模型。有限元(FE)结果表明,包括相变在内,应力状态发生了急剧变化。各种沉积模式(光栅之字形,螺旋形进出和螺旋形进出)的有限元建模说明了它们对热应力和凝固组织的显着影响。根据金属热力学理论,提出了两种不同的模型。虽然第一个模型基于顺序耦合的温度-相变应力场,但是第二个模型基于完全耦合的温度-应力场。在H13工具钢在低碳钢基底上的单层沉积研究中,元素变形最高的沉积材料顶部的节点显示出两个模型之间的边际差异。

著录项

  • 作者

    Ghosh, Suhash.;

  • 作者单位

    University of Missouri - Rolla.;

  • 授予单位 University of Missouri - Rolla.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号