首页> 外文学位 >Testing fundamental physics in the solar system: Constraints on Lorentz symmetry and braneworld gravity.
【24h】

Testing fundamental physics in the solar system: Constraints on Lorentz symmetry and braneworld gravity.

机译:测试太阳系中的基本物理学:洛伦兹对称性和Braneworld重力的约束。

获取原文
获取原文并翻译 | 示例

摘要

We use observations of solar system bodies to derive constraints on departures from General Relativity (GR). We also characterize the initial science data from the Apache Point Observatory Lunar Laser-ranging Operation (APOLLO). The millimeter-precision APOLLO data will enable an order-of-magnitude improvement in several tests of gravitational physics.; This work is motivated by the current dark energy crisis. Multiple independent astrophysical observations suggest that the Universe is accelerating in its expansion. GR with Einstein's cosmological constant can give rise to acceleration, but no viable theory can compute the observed dark energy density from first principles.; A plausible alternative to dark energy is that GR breaks down on cosmological scales. There is no shortage of speculative gravity theories that could replace GR. Many of these predict observable deviations from GR in the solar system. We look for the evidence of such deviations in two ways: (1) searching for Lorentz symmetry violation using Lunar Laser Ranging (LLR) data and (2) searching for anomalous perihelion precession using planetary range and Doppler measurements.; Our constraints on Lorentz symmetry violation are presented in the Standard-Model Extension (SME) framework. No evidence for Lorentz violation is seen at the level of 10-6 to 10-11 in the six dimensionless SME parameters to which LLR is sensitive.; We also show that any universal anomalous precession of the planetary perihelia must be less than 0.02 arcseconds per century. This constraint has direct relevance to the Dvali-Gabadadze-Porrati (DGP) theory of braneworld gravity, which can explain the accelerating Universe without a cosmological constant. DGP theory posits that gravity weakens above a cross-over scale rc = 5 Gpc. As a result, DGP predicts a uniform anomalous perihelion precession rate for the planets of do/dt = 5 x 10-4 arcseconds per century. Our precession constraint requires rc > 0.13 Gpc, a factor of 40 away from the DGP prediction.; Finally, we characterize the first 22 months of science data from APOLLO, a new LLR observatory. We show that the median nightly range uncertainty is 1.8 mm, and that there is no evidence for any systematic measurement error introduced by the APOLLO instrument on time-scales of minutes to hours.
机译:我们使用对太阳系天体的观测来得出相对于广义相对论(GR)偏离的约束。我们还将表征来自Apache Point天文台月球激光测距操作(APOLLO)的初始科学数据。毫米精度的APOLLO数据将使重力物理的多个测试得到数量级的改善。这项工作受到当前暗能量危机的推动。多个独立的天文学观测表明,宇宙的膨胀正在加速。具有爱因斯坦宇宙学常数的GR可以产生加速度,但是没有可行的理论可以根据第一原理来计算观测到的暗能量密度。暗能量的一种可能替代方法是,GR在宇宙尺度上分解。不缺少可以取代GR的投机引力理论。其中许多预测太阳系中GR的可观察到的偏差。我们以两种方式寻找这种偏离的证据:(1)使用月球激光测距(LLR)数据搜索洛伦兹对称违规,以及(2)使用行星范围和多普勒测量搜索异常近日点进动。在标准模型扩展(SME)框架中介绍了我们对违反Lorentz对称性的约束。在LLR敏感的六个无量纲SME参数中,在10-6至10-11的水平上没有发现违反洛伦兹的证据。我们还表明,行星近日点的任何普遍异常进动每世纪必须小于0.02弧秒。这个约束与Braneworld引力的Dvali-Gabadadze-Porrati(DGP)理论直接相关,该理论可以解释没有宇宙常数的加速宇宙。 DGP理论认为,重力超过rc = 5 Gpc时会减弱。结果,DGP预测每世纪do / dt = 5 x 10-4弧秒的行星具有一致的异常近日点进动速率。我们的进动约束要求rc> 0.13 Gpc,与DGP预测相距40倍。最后,我们描述了来自新的LLR天文台APOLLO的前22个月科学数据的特征。我们显示,夜间范围的中值不确定度为1.8毫米,并且没有证据表明APOLLO仪器在几分钟到几小时的时标上引入了任何系统性的测量误差。

著录项

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Physics Astronomy and Astrophysics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 天文学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号