首页> 外文学位 >Causal not confounded gene networks: Inferring acyclic and non-acyclic gene Bayesian networks in mRNA expression studies using recursive V-structures, genetic variation, and orthogonal causal anchor structural equation models.
【24h】

Causal not confounded gene networks: Inferring acyclic and non-acyclic gene Bayesian networks in mRNA expression studies using recursive V-structures, genetic variation, and orthogonal causal anchor structural equation models.

机译:因果不混淆的基因网络:使用递归V型结构,遗传变异和正交因果锚结构方程模型,在mRNA表达研究中推断无环和非无环基因贝叶斯网络。

获取原文
获取原文并翻译 | 示例

摘要

To improve the recovery of gene-gene and marker-gene interaction networks from microarray and genetic data, we first propose a new procedure for learning Bayesian networks. This algorithm, termed Bilayer Verification, starts with a user-specified leaf node, and then searches upstream to locate portions of the biological interaction network that can be verified as un-confounded by hidden variables such as protein levels.;Estimates of the specificity of the algorithm are made through small sample simulation, and an illustrative network is learned from mouse microarray data that implicates particular liver genes in the Apoe null mouse model of diet-induced atherosclerosis.;We next extend these algorithms by exploring how multiple independent causal anchors that impact the same trait can be used to organize gene expression data into non-acyclic gene-trait causal networks. While earlier methods begin with sets of single pleiotropic QTL, we formulate a gene network recovery approach based on a synthesis of (1) Bilayer verification theory; (2) selecting orthogonal causal anchors (independent Quantitative Trait Loci (QTL) MA and MB that show asymmetric MA → A → B ← MB impact on traits A and B; abbreviated OCA); (3) Structural Equation Model comparison; and (4) forward-stepwise regression. Combining these, we introduce a family of Local-structure Edge Orienting (LEO) scoring algorithms that generate model-comparison metrics. LEO scores weigh the evidence for competing causal graphs using local models that isolate each A → B edge evaluation from its neighbors to prevent error propagation and relax the constraint of network acyclicity.;Our studies show that the OCA-based LEO scores have almost twice the detection power at comparable false positive rates compared to single QTL and common pleiotropy anchor models in the face of confounded association. Moreover if we match thresholds to obtain comparable power, the orthomarker methods obtain better false positive rates than competing methods.;We demonstrate the method by recovering multiple positive controls in the cholesterol biosynthesis pathway and implicating four novel genes as being downstream and hence co-regulated by the sterol regulatory pathway in mouse liver: Tlcd1, Slc25a44, Slc23a1 , and Qdpr.
机译:为了提高从微阵列和遗传数据中恢复基因-基因和标记-基因相互作用网络的能力,我们首先提出了一种学习贝叶斯网络的新程序。该算法称为双层验证,从用户指定的叶节点开始,然后向上游搜索以定位生物相互作用网络中可以被隐藏变量(例如蛋白质水平)验证为无混淆的部分。该算法是通过小样本模拟完成的,并从小鼠微阵列数据中学到了一个说明性网络,该网络牵涉饮食诱导的动脉粥样硬化的Apoe null小鼠模型中的特定肝脏基因。接下来,我们将探索如何通过多个独立的因果锚来扩展这些算法影响相同性状的基因可用于将基因表达数据组织到非非循环性基因性状因果网络中。虽然较早的方法从一组单一的多效性QTL开始,但我们基于(1)双层验证理论的综合提出了一种基因网络恢复方法。 (2)选择正交因果锚(独立的定量性状位点(QTL)MA和MB,它们对特征A和B表现出不对称的MA→A→B←MB影响;缩写为OCA); (3)结构方程模型比较; (4)逐步回归。结合这些,我们介绍了一系列生成模型比较指标的局部结构边缘定位(LEO)评分算法。 LEO分数权衡了使用局部模型的竞争因果图的证据,该模型将每个A→B边缘评估与其邻居隔离开来,以防止错误传播并放松网络非循环性的约束。;我们的研究表明,基于OCA的LEO分数几乎是面对混杂的联想,与单个QTL和常见的多效性锚模型相比,具有可比的假阳性率的检测能力。此外,如果我们匹配阈值以获得可比较的功效,则正向标记方法比竞争方法获得更好的假阳性率。;我们通过回收胆固醇生物合成途径中的多个阳性对照并将四个新基因牵连到下游从而共同调控来证明该方法通过小鼠肝脏中的固醇调节途径:Tlcd1,Slc25a44,Slc23a1和Qdpr。

著录项

  • 作者

    Aten, Jason Erik.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Biology Genetics.;Statistics.;Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号