首页> 外文学位 >Wafer-level testing and test planning for integrated circuits.
【24h】

Wafer-level testing and test planning for integrated circuits.

机译:晶圆级测试和集成电路测试计划。

获取原文
获取原文并翻译 | 示例

摘要

The relentless scaling of semiconductor devices and high integration levels have lead to a steady increase in the cost of manufacturing test for integrated circuits (ICs). The higher test cost leads to an increase in the product cost of ICs. Product cost is a major driver in the consumer electronics market, which is characterized by low profit margins and the use of a variety of core-based system-on-chip (SoC) designs. Packaging has also been recognized as a significant contributor to the product cost for SoCs. Packaging cost and the test cost for packaged chips can be reduced significantly by the use of effective test methods at the wafer level, also referred to as wafer sort.;Test application time is a major practical constraint for wafer sort, even more than for package test. Therefore, not all the scan-based digital test patterns can be applied to the die under test. This thesis first presents a test-length selection technique for wafer-level testing of core-based SoCs. This optimization technique, which is based on a combination of statistical yield modeling and integer linear programming (ILP), provides the pattern count for each embedded core during wafer sort such that the probability of screening defective dies is maximized for a given upper limit on the SoC test time. A large number of wafer-probe contacts can potentially lead to higher yield loss during wafer sort. An optimization framework is therefore presented to address test access mechanism (TAM) optimization and test-length selection for wafer-level testing, when constraints are placed on the number of number of chip pins that can be contacted.;Next, a correlation-based signature analysis technique is presented for mixed-signal test at the wafer-level using low-cost digital testers. The proposed method overcomes the limitations of measurement inaccuracies at the wafer-level. A generic cost model is developed to evaluate the effectiveness of wafer-level testing of analog and digital cores in a mixed-signal SoC, and to study its impact on test escapes, yield loss and packaging cost. Results are presented for a typical mixed-signal "big-D/small-A" SoC from industry, which contains a large section of flattened digital logic and several large mixed-signal cores.;Wafer-level test during burn-in (WLTBI) is an emerging practice in the semiconductor industry that allows testing to be performed simultaneously with burn-in at the wafer-level. However, the testing of multiple cores of a SoC in parallel during WLTBI leads to constantly-varying device power during the duration of the test. This power variation adversely affects predictions of temperature and the time required for burn-in. A test-scheduling technique is presented for WLTBI of core-based SoCs, where the primary objective is to minimize the variation in power consumption during test. A secondary objective is to minimize the test application time.;Finally, this thesis presents a test-pattern ordering technique for WLTBI. The objective here is to minimize the variation in power consumption during test application. The test-pattern ordering problem for WLTBI is solved using ILP and efficient heuristic techniques. The thesis also demonstrates how test-pattern manipulation and pattern-ordering can be combined for WLTBI. Test-pattern manipulation is carried out by carefully filling the don't-care (X) bits in test cubes. The X-fill problem is formulated and solved using an efficient polynomial-time algorithm. In summary, this research is targeted at cost-efficient wafer-level test and burn-in of current- and next-generation semiconductor devices. The proposed techniques are expected to bridge the gap between wafer sort and package test, by providing cost-effective wafer-scale test solutions. The results of this research will lead to higher shipped-product quality, lower product cost, and pave the way for known good die (KGD) devices, especially for emerging technologies such as three-dimensional integrated circuits.
机译:半导体器件的不断扩展和高集成度已导致集成电路(IC)制造测试成本的稳定增长。较高的测试成本导致IC产品成本的增加。产品成本是消费电子市场的主要驱动力,其特点是利润率低以及使用了多种基于内核的片上系统(SoC)设计。封装也被认为是SoC产品成本的重要贡献者。通过在晶片级上使用有效的测试方法(也称为晶片分类),可以显着降低封装成本和封装芯片的测试成本;测试应用时间是晶片分类的主要实际约束,甚至比封装更重要测试。因此,并非所有基于扫描的数字测试图案都可以应用于被测芯片。本文首先提出了一种测试长度选择技术,用于基于内核的SoC的晶圆级测试。这种优化技术基于统计良率建模和整数线性规划(ILP)的组合,可在晶圆分选过程中为每个嵌入式核提供图案计数,从而在给定的上限下最大化筛查缺陷晶粒的可能性。 SoC测试时间。大量的晶圆探针接触可能会在晶圆分类过程中导致更高的良率损失。因此,当对可接触的芯片引脚数量施加限制时,提出了一种优化框架来解决用于晶圆级测试的测试访问机制(TAM)优化和测试长度选择。其次,基于相关性提出了使用低成本数字测试仪的晶圆级混合信号测试的签名分析技术。所提出的方法克服了晶片级测量不准确的局限性。开发了一种通用成本模型,以评估混合信号SoC中晶片级模拟和数字内核测试的有效性,并研究其对测试逃逸率,良率损失和封装成本的影响。给出了典型的业界混合信号“大D /小A” SoC的结果,该SoC包含很大一部分扁平化的数字逻辑和几个大型混合信号内核。;预烧期间的晶圆级测试(WLTBI )是半导体行业中的一种新兴实践,它允许在晶圆级进行老化测试的同时进行测试。但是,在WLTBI期间并行测试SoC的多个内核会导致测试期间设备功率不断变化。这种功率变化会对温度和老化所需时间的预测产生不利影响。提出了一种针对基于内核的SoC的WLTBI的测试计划技术,其主要目标是最大程度地减少测试过程中功耗的变化。第二个目的是最大程度地减少测试应用程序的时间。最后,本文提出了一种用于WLTBI的测试模式排序技术。此处的目的是最大程度地减少测试应用过程中功耗的变化。使用ILP和高效的启发式技术解决了WLTBI的测试模式排序问题。本文还演示了如何将测试模式操纵和模式排序结合起来用于WLTBI。通过小心地在测试多维数据集中填充“无关”(X)位来执行测试模式操作。 X填充问题是使用有效的多项式时间算法来制定和解决的。总而言之,这项研究的目标是经济高效的晶圆级测试以及当前和下一代半导体器件的预烧。通过提供具有成本效益的晶圆级测试解决方案,预计所提出的技术将弥合晶圆分类和封装测试之间的差距。这项研究的结果将导致更高的出货产品质量,更低的产品成本,并为已知的良好管芯(KGD)器件,尤其是诸如三维集成电路等新兴技术铺平道路。

著录项

  • 作者

    Bahukudumbi, Sudarshan.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号