首页> 外文学位 >The tissue-engineering of functional osteochondral constructs for cartilage repair.
【24h】

The tissue-engineering of functional osteochondral constructs for cartilage repair.

机译:用于软骨修复的功能性骨软骨构造的组织工程。

获取原文
获取原文并翻译 | 示例

摘要

Articular cartilage is a specialized connective tissue that bears load and reduces friction across moving joints. When damaged, articular cartilage does not heal, but often degenerates further, leading to pain and loss of function. This dissertation focuses on the engineering of anatomically-shaped osteochondral replacement tissue that may in the future be used to replace entire articular surfaces destroyed by traumatic injury or degenerative disease. Guiding this effort toward a biologic arthroplasty system are questions inherent to the paradigm of functional tissue-engineering: (1) How closely can we reproduce the native properties of cartilage in engineered tissue? (2) How important is it to reproduce these properties and what level of construct development is necessary prior to implantation? (3) How can we effectively transition from efforts in the lab to evaluation in a clinically-relevant in vivo model?;Within the context of these overriding questions, the research in this dissertation shows that with an appropriate cell source, scaffold material and mechano-chemical culture environment, engineered chondral tissue can be produced to match or exceed the equilibrium Young's modulus and the proteoglycan content of native cartilage from which the chondrocyte cells were isolated. The dynamic modulus and the collagen content however remain currently at sub-native values. Furthermore, the functional tissue properties are sensitive to chemical perturbation and will deteriorate if exposed prematurely in culture to inflammatory cytokines that are common within a damaged or diseased joint. A period of in vitro cultivation therefore appears necessary to promote the chondrocyte-mediated elaboration of an extracellular matrix that will afford biomechanical and chemical protection from the in vivo joint loading environment.;When increasing the complexity of engineered chondral constructs to more clinically-relevant osteochondral constructs, the choice of underlying substrate is dependent on its ability to sustain successful chondral tissue development in culture as well as its clinical appropriateness upon in vivo implantation. Devitalized trabecular bone is shown in this doctoral dissertation to be inhibitive towards chondral development and a promising synthetic alternative is identified and successfully used in a hybrid (biologic-synthetic) implant.;The first steps are taken towards the culture and implantation of a complete biological arthroplasty in the form of a canine patella and challenges are identified. These include: nutrient limitations due to increased diffusional distances when increasing construct size, challenges associated with the installation and fixation of large constructs, and mechanical failure of the chondral region of implanted constructs due to insufficient mechanical strength and problems in the patellar base design.;The research in this dissertation has spanned a breadth of work from the generation of a functional engineered tissue in the lab to making the first steps in the translation to clinical application by implantation and evaluation in a large animal model. The complexity of the tissue was increased from small chondral-only cylinders to bilayered osteochondral tissues with underlying base substrates and finally to large anatomically-shaped osteochondral constructs in the form of human and canine patellae. It is anticipated that these findings will aid and improve the functional tissue engineering of articular cartilage and advance the field towards the goal of creating a viable clinical treatment for osteoarthritis.
机译:关节软骨是一种特殊的结缔组织,可以承受负荷并减少活动关节之间的摩擦。受损时,关节软骨无法愈合,但通常会进一步退化,从而导致疼痛和功能丧失。本论文的重点是解剖形状的骨软骨替代组织的工程设计,该组织将来可能会用于替代因外伤或退行性疾病而破坏的整个关节表面。将这种努力引导至生物人工关节系统的问题是功能组织工程学范式固有的问题:(1)我们能在工程组织中再现软骨的天然特性多近? (2)再现这些特性有多重要,在植入前必须发展什么水平的构建体? (3)我们如何才能从实验室的工作有效地过渡到临床相关的体内模型的评估?;在这些最重要的问题的背景下,本论文的研究表明,采用适当的细胞来源,支架材料和机械-化学培养环境中,可以生产经工程改造的软骨组织,使其达到或超过平衡软骨细胞从中分离出来的天然软骨的平衡杨氏模量和蛋白聚糖含量。然而,动态模量和胶原含量目前保持在亚天然值。此外,功能组织特性对化学扰动敏感,如果在培养中过早暴露于受损或患病关节中常见的炎性细胞因子,则会恶化。因此,体外培养期似乎有必要促进软骨细胞介导的细胞外基质的修饰,从而为体内关节负荷环境提供生物力学和化学保护。;当将工程软骨构建体的复杂性提高到与临床更相关的骨软骨时在构建中,基础底物的选择取决于其在培养中维持成功的软骨组织发育的能力以及其在体内植入后的临床适用性。该博士论文显示失活的小梁骨对软骨发育具有抑制作用,并确定了一种有前途的合成替代物,并成功地用于混合(生物合成)植入物。;第一步是朝着完整的生物体的培养和植入迈进。以犬牙pat骨的形式进行关节成形术并确定挑战。这些包括:由于增加构造尺寸时扩散距离的增加而导致的营养限制,与大型构造物的安装和固定相关的挑战,以及由于机械强度不足和the骨基部设计中的问题而导致的植入构造的软骨区域的机械故障。本论文的研究涵盖了广泛的工作,从实验室功能性组织的产生到通过在大型动物模型中植入和评估,实现翻译到临床应用的第一步。组织的复杂性从仅具有小软骨的圆柱体增加到具有下面基础基底的双层骨软骨组织,最后增加到人和can骨形式的大解剖形状的骨软骨构造。预期这些发现将有助于并改善关节软骨的功能组织工程,并朝着为骨关节炎创建可行的临床治疗的目标推进该领域。

著录项

  • 作者

    Lima, Eric Gevork.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 282 p.
  • 总页数 282
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号