首页> 外文学位 >Aligning and modeling protein-DNA interfaces: Towards an understanding of protein-DNA binding specificity.
【24h】

Aligning and modeling protein-DNA interfaces: Towards an understanding of protein-DNA binding specificity.

机译:蛋白质和DNA界面的比对和建模:理解蛋白质与DNA的结合特异性。

获取原文
获取原文并翻译 | 示例

摘要

Years of structural work characterizing protein-DNA complexes has provided tremendous insight into the mechanisms of binding specificity. Currently, modeling approaches capitalizing on this wealth of structural data are being use to further understand specificity. Protein-DNA complexes are used as templates on which to model alternate protein and DNA sequences, and binding energies are calculated for the modeled complexes. However, the relationship between the protein-DNA interface geometry (docking arrangement) and binding is still poorly understood. The focus of this dissertation is to analyze the geometric properties of protein-DNA interfaces and their effect on atomic-level modeling of binding specificity.; A new method is introduced to structurally align interfacial amino acids observed in protein-DNA complexes. The spatial relationships of individual amino acid-nucleotide pairs are quantified and a dynamic-programming algorithm optimally aligns residues from different complexes using these relationships. An interface alignment score, IAS, measures the alignment quality and provides a quantitative measure of the similarity in the docking geometry between two protein-DNA complexes. A large set of protein-DNA complexes are aligned and clustered based on their IAS values. Proteins within a single family form identifiable clusters; however, subgroup clustering is often observed within families. Although proteins with similar folds tend to dock in similar ways, important differences are observed even for structural motifs that almost perfectly align. Relationships are observed between the interfaces formed in cognate and non-cognate complexes involving the same proteins indicating a strong driving force to maintain certain contacts, even if this requires a distortion of the DNA.; A novel interface modeling approach is described that uses rotamer-based descriptions of protein sidechains and DNA bases, a Monte Carlo search algorithm and a molecular-mechanics energy function. Modeling and binding-energy calculations for the Zif268 zinc finger demonstrate excellent agreement with experimental binding data when the wild-type complex is used as the template. However, predictions using templates with decreasing interface similarity to the wild-type complex demonstrate decreasing accuracy. Sidechain placement, a critical feature in modeling protein-DNA binding, shows similar correlations. The prediction accuracy of key interacting sidechain-base pairs depends strongly on the interface properties of the templates complexes used.
机译:多年表征蛋白质-DNA复合物的结构工作为结合特异性的机理提供了巨大的见识。当前,正在利用利用大量结构数据的建模方法来进一步理解特异性。蛋白质-DNA复合物用作模板,在其上模拟交替的蛋白质和DNA序列,并为建模的复合物计算结合能。但是,蛋白质-DNA界面的几何形状(对接排列)与结合之间的关系仍然知之甚少。本文的重点是分析蛋白质-DNA界面的几何特性及其对结合特异性的原子级建模的影响。引入了一种新方法来对蛋白质-DNA复合物中观察到的界面氨基酸进行结构比对。定量单个氨基酸-核苷酸对的空间关系,并使用这些关系,动态编程算法可以最佳地比对来自不同复合物的残基。界面比对得分IAS可测量比对质量,并提供定量测量两种蛋白质-DNA复合物之间对接几何形状的相似性。大量蛋白质-DNA复合物根据其IAS值进行排列和聚类。单个家族中的蛋白质形成可识别的簇;但是,经常在家庭中观察到亚群聚类。尽管具有相似折叠的蛋白质倾向于以相似的方式对接,但即使对于几乎完美对齐的结构基序也观察到了重要的差异。观察到在涉及相同蛋白质的同源和非同源复合物中形成的界面之间的关系,表明有很强的驱动力来维持某些接触,即使这需要DNA的变形。描述了一种新颖的界面建模方法,该方法使用基于旋转异构体的蛋白质侧链和DNA碱基描述,蒙特卡洛搜索算法和分子机械能函数。当将野生型复合物用作模板时,Zif268锌指的建模和结合能计算证明与实验结合数据极佳一致性。但是,使用与野生型复合物的界面相似性降低的模板进行的预测证明了准确性降低。侧链位置是模拟蛋白质-DNA结合的关键特征,显示出相似的相关性。关键相互作用的侧链-碱基对的预测准确性在很大程度上取决于所用模板复合物的界面性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号