首页> 外文学位 >A thermodynamics based damage mechanics framework for fatigue analysis of microelectronics solder joints with size effects.
【24h】

A thermodynamics based damage mechanics framework for fatigue analysis of microelectronics solder joints with size effects.

机译:基于热力学的损伤力学框架,用于分析具有尺寸效应的微电子焊点的疲劳。

获取原文
获取原文并翻译 | 示例

摘要

Experimental observations of an increase in resistance with decreasing specimen size and under the presence of non-uniform plastic deformation fields have pushed the development for small scale plasticity theories since the early 90's. The observed phenomenon has been explained in terms of an accumulation of a density of geometrically necessary dislocations, which is required in order to accommodate nonuniform plastic deformation fields. This extra density of dislocations, contributes to the additional hardening observed in small scale specimens under imposed non-uniform plastic deformations. The density of geometrically necessary dislocations has been related to the gradients of plastic strain which are imposed either by the loading conditions or the geometry of the specimen. The proposed set of theories has promoted the idea that there is an additional material parameter, namely a plastic length scale. Within these theories when the material is under the presence of a non-uniform plastic deformation field and once typical structural dimensions approaches the material length scale there is an increase in resistance. Such a class of mathematical framework is currently known as strain gradient plasticity (SGP) theory. On the other hand, the current trend towards miniaturization in the microelectronics industry has raised questions about the true behavior of small structural systems. In this dissertation we address such a problem but from the perspective of eutectic solder alloys. Eutectic solder alloys as frequently used in the microelectronics industry exhibit considerable rate dependent response even at room temperature. Moreover for this type of material, the problem of interest is the response under cyclic loadings induced by thermomechanical fatigue leading to the classical case of creep-fatigue interaction. Several experimental and theoretical studies have been developed in order to generate robust constitutive descriptions for this class of applications. For a structure whose size is close to a 100mum or larger several and relatively simple to implement constitutive models are now available in the literature, and it can be generally stated that the level of understanding has reached a mature level. However, the same problem when the size of the structure is below this characteristic dimension has not been studied before. In other words, the available constitutive models completely neglect the incidence of size effects when evaluating the true behavior of the material at small scales. (Abstract shortened by UMI.)
机译:自90年代初以来,随着试样尺寸的减小以及在非均匀塑性变形场的作用下电阻增加的实验观察推动了小规模可塑性理论的发展。已经观察到的现象是根据几何上必要的位错的密度的累积来解释的,这是为了适应不均匀的塑性变形场所必需的。位错的这种额外密度有助于在施加非均匀塑性变形的小规模试样中观察到额外的硬化。几何上必要的位错的密度与塑性应变的梯度有关,塑性应变的梯度是由加载条件或试样的几何形状所强加的。提出的一组理论提出了一种想法,即存在一个附加的材料参数,即塑料长度标尺。在这些理论中,当材料存在不均匀的塑性变形场时,一旦典型的结构尺寸接近材料长度尺度,电阻就会增加。这类数学框架目前称为应变梯度可塑性(SGP)理论。另一方面,当前微电子工业中的小型化趋势提出了关于小型结构系统的真实行为的疑问。在本文中,我们从共晶焊料合金的角度解决了这个问题。微电子工业中常用的低共熔焊料合金即使在室温下也表现出相当大的速率依赖性响应。此外,对于这种类型的材料,感兴趣的问题是由热机械疲劳引起的循环载荷下的响应,从而导致蠕变疲劳相互作用的经典情况。为了产生针对此类应用的可靠的本构描述,已经进行了一些实验和理论研究。对于一个尺寸接近100微米或更大的结构,现在可以在文献中找到几种相对容易实施的本构模型,并且可以普遍地说,理解水平已经达到了成熟水平。然而,以前没有研究过当结构的尺寸低于该特征尺寸时的相同问题。换句话说,在评估小规模材料的真实行为时,可用的本构模型完全忽略了尺寸效应的发生。 (摘要由UMI缩短。)

著录项

  • 作者

    Gomez, Juan.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Civil.; Engineering Mechanical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 377 p.
  • 总页数 377
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号