首页> 外文学位 >Oxidative stress induced mitochondrial dysfunction accelerates age related muscle atrophy.
【24h】

Oxidative stress induced mitochondrial dysfunction accelerates age related muscle atrophy.

机译:氧化应激引起的线粒体功能障碍加速了与年龄有关的肌肉萎缩。

获取原文
获取原文并翻译 | 示例

摘要

Reactive oxygen species (ROS) and oxidative stress have been implicated in the etiology of age related loss of muscle mass and function, also known as sarcopenia. However, direct casual evidence of ROS mediating muscle atrophy has not been thoroughly tested. To investigate the role of chronic oxidative stress in vivo, we used a mouse model that lacks a major antioxidant enzyme CuZnSOD (Sod1-/-). The Sod1-/- mice are characterized as having very high levels of oxidative stress and elevated levels of oxidative damage to lipid, protein, and DNA in number of tissues, including skeletal muscle. Moreover, Sod1-/- mice show a dramatic age related loss of skeletal muscle mass that is accelerated compared to wild-type mice.;Using this animal model, we first investigated the role of in vivo oxidative stress on mitochondrial function. EM analysis revealed that in aged Sod1-/- muscle, a significant increase in both interfibrillar and subsarcolemmal mitochondria number was observed. However, despite having more mitochondria, Sod1-/- muscle show a significant decline in mitochondrial function with higher production of ROS. These changes became more apparent as animals aged. To further investigate the mechanism of mitochondrial dysfunction in response to oxidative stress, we examined the mitochondrial apoptotic pathway. Sod1-/- mitochondria show more rapid induction of mitochondrial PT with higher release of the pro-apoptotic proteins, cytochrome c and AIF. These data were supported by the observation of the upregulation of caspase-3 activity and increased levels of apoptotic nuclei measured in a cell free system.;Continuing our study of oxidative stress induced muscle atrophy, we next investigated whether neuromuscular innervations is altered in Sod1 -/- mice. Morphological analyses showed that postsynaptic endplates are severely disrupted in Sod1-/- muscle by 20 months age. Synaptic cleft are reduced and AChR are significantly fragmented. In an agreement with these observations, we found a significant decrease in AChR protein level with subsequent increase in denervated NMJs. At 20 months of age ∼ 80% of the NMJ were found to be denervated in Sod1-/-. Furthermore, subsarcolemmal mitochondria, which function to support neuromuscular transmission, also exhibit a dramatic decline in ATP generation with concomitant increase in ROS generation. Collectively, these data suggest that mitochondrial function and tight regulation of oxidative stress play a critical role in maintaining neuromuscular innervations.;The maintenance of skeletal muscle mass depends on the overall balance between the rates of protein synthesis and breakdown. Thus, age related muscle atrophy may result from the decreased protein synthesis, increased proteolysis, or simultaneous changes in both processes governed by complex multifactorial mechanisms. Growing evidence implicates oxidative stress and ROS as an important regulator of proteolysis. Thus we investigated whether Sod1 -/- mice have increased oxidative protein damage and accelerated proteolysis with age. In Sod1-/- muscle, a significant increase in protein carbonyl groups were observed suggesting increased oxidative protein damage. In addition, as muscle atrophy increases with age, an upregulation of cysteine protease, calpain and caspase-3 activities were detected. These proteases are known to play a role in initiating the breakdown of sarcomeres. Furthermore, an enhanced muscle atrophy was also coupled with the activation of a major proteolytic system, the ubiquitin proteasome pathway. A significant increase in ubiquitin conjugated products as well as elevated activities of 26S core peptidase activity were found in Sod1 -/- muscle.;In summary, our results clearly demonstrate that regulation of oxidant production and maintenance of mitochondria function are two critical components in preserving skeletal muscle mass and function with age.
机译:活性氧(ROS)和氧化应激已与年龄相关的肌肉量和功能丧失的病因有关,也称为肌肉减少症。但是,ROS介导的肌肉萎缩的直接偶然证据尚未得到充分测试。为了研究体内慢性氧化应激的作用,我们使用了缺少主要抗氧化酶CuZnSOD(Sod1-/-)的小鼠模型。 Sod1-/-小鼠的特征是在许多组织(包括骨骼肌)中具有很高水平的氧化应激,并且对脂质,蛋白质和DNA的氧化损伤水平升高。此外,与野生型小鼠相比,Sod1-/-小鼠显示出与年龄相关的骨骼肌质量急剧下降的趋势。使用这种动物模型,我们首先研究了体内氧化应激对线粒体功能的作用。 EM分析表明,在老龄的Sod1-/-肌肉中,观察到原纤维间和肌膜下线粒体数目均显着增加。但是,尽管线粒体更多,但Sod1-/-肌肉显示出较高的ROS含量,线粒体功能明显下降。随着动物的衰老,这些变化变得更加明显。为了进一步研究线粒体功能障碍响应氧化应激的机制,我们检查了线粒体的凋亡途径。 Sod1-/-线粒体显示出更快的线粒体PT诱导,同时促凋亡蛋白,细胞色素c和AIF释放更高。在无细胞系统中观察到的caspase-3活性上调和凋亡核水平升高的观察结果为这些数据提供了支持。继续研究氧化应激引起的肌肉萎缩,我们接下来研究了Sod1中神经肌肉神经支配是否发生了改变- /- 老鼠。形态分析表明,到20个月大时,Sod1-/-肌肉中突触后终板被严重破坏。突触裂减少,AChR显着断裂。与这些观察结果一致,我们发现AChR蛋白水平显着下降,而神经支配的NMJ随后增加。在20个月大时,发现约80%的NMJ在Sod1-/-中失神经。此外,功能为支持神经肌肉传递的肌膜下线粒体也显示出ATP生成的显着下降,伴随着ROS生成的增加。总的来说,这些数据表明线粒体功能和氧化应激的严格调节在维持神经肌肉神经支配中起关键作用。骨骼肌质量的维持取决于蛋白质合成和分解速率之间的总体平衡。因此,与年龄相关的肌肉萎缩可能是由于蛋白质合成减少,蛋白水解增加或由复杂的多因素机制控制的两个过程同时发生变化所致。越来越多的证据表明氧化应激和ROS是蛋白水解的重要调节剂。因此,我们调查了Sod1-/-小鼠是否随着年龄的增长而增加了氧化蛋白的损害并加速了蛋白水解。在Sod1-/-肌肉中,观察到蛋白质羰基基团的显着增加,表明氧化蛋白质损伤增加。另外,随着肌肉萎缩随着年龄的增长而增加,检测到半胱氨酸蛋白酶,钙蛋白酶和caspase-3活性上调。已知这些蛋白酶在引发肉瘤的分解中起作用。此外,增强的肌肉萎缩还与主要的蛋白水解系统(泛素蛋白酶体途径)的激活有关。在Sod1-/-肌肉中发现泛素结合产物的显着增加以及26S核心肽酶活性的升高。;总之,我们的结果清楚地表明,调节氧化剂的产生和维持线粒体功能是保存中的两个关键要素骨骼肌的质量和功能随年龄增长。

著录项

  • 作者

    Jang, Youngmok C.;

  • 作者单位

    The University of Texas Health Science Center at San Antonio.;

  • 授予单位 The University of Texas Health Science Center at San Antonio.;
  • 学科 Biology Cell.;Biology Physiology.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号