首页> 外文学位 >Multi-wavelength differential absorption measurements of chemical species.
【24h】

Multi-wavelength differential absorption measurements of chemical species.

机译:化学物质的多波长差分吸收测量。

获取原文
获取原文并翻译 | 示例

摘要

The probability of accurate detection and quantification of airborne species is enhanced when several optical wavelengths are used to measure the differential absorption of molecular spectral features. Characterization of minor atmospheric constituents, biological hazards, and chemical plumes containing multiple species is difficult when using current approaches because of weak signatures and the use of a limited number of wavelengths used for identification. Current broadband systems such as Differential Optical Absorption Spectroscopy (DOAS) have either limitations for long-range propagation, or require transmitter power levels that are unsafe for operation in urban environments. Passive hyperspectral imaging systems that utilize absorption of solar scatter at visible and infrared wavelengths, or use absorption of background thermal emission, have been employed routinely for detection of airborne chemical species. Passive approaches have operational limitations at various ranges, or under adverse atmospheric conditions because the source intensity and spectrum is often an unknown variable.;Measurements have provided the incentive to develop algorithms for the calculations of atmospheric species concentrations using multiple wavelengths. These algorithms are used to prepare simulations and make comparisons with experimental results from absorption data of a supercontinuum laser source. The MODTRAN model is used in preparing the simulations, and also in developing additional algorithms to select filters for use with a MWIR (midwave infrared) imager for detection of plumes of methane, propane, gasoline vapor, and diesel vapor. These simulations were prepared for system designs operating on a down-looking airborne platform. A data analysis algorithm for use with a hydrocarbon imaging system extracts regions of interest from the field-of-view for further analysis.;An error analysis is presented for a scanning DAS (Differential Absorption Spectroscopy) lidar system operating from an airborne platform that uses signals scattered from topographical targets. The analysis is built into a simulation program for testing real-time data processing approaches, and to gauge the effects on measurements of path column concentration due to ground reflectivity variations. An example simulation provides a description of the data expected for methane.;Several accomplishments of this research include: (1) A new lidar technique for detection and measurement of concentrations of atmospheric species is demonstrated that uses a low-power supercontinuum source. (2) A new multi-wavelength algorithm, which demonstrates excellent performance, is applied to processing spectroscopic data collected by a longpath supercontinuum laser absorption instrument. (3) A simulation program for topographical scattering of a scanning DAS system is developed, and it is validated with aircraft data from the ITT Industries ANGEL (Airborne Natural Gas Emission Lidar) 3-lambda lidar system. (4) An error analysis procedure for DAS is developed, and is applied to measurements and simulations for an airborne platform. (5) A method for filter selection is developed and tested for use with an infrared imager that optimizes the detection for various hydrocarbons that absorb in the midwave infrared. (6) The development of a Fourier analysis algorithm is described that allows a user to rapidly separate hydrocarbon plumes from the background features in the field of view of an imaging system.;The work presented here describes a measurement approach that uses a known source of a low transmitted power level for an active system, while retaining the benefits of broadband and extremely long-path absorption operations. An optimized passive imaging system also is described that operates in the 3 to 4 mum window of the mid-infrared. Such active and passive instruments can be configured to optimize the detection of several hydrocarbon gases, as well as many other species of interest.
机译:当几个光学波长用于测量分子光谱特征的差异吸收时,可以更准确地检测和量化气载物质的可能性。当使用当前的方法时,由于特征性弱以及用于识别的有限数量的波长的使用,很难对少量的大气成分,生物危害和包含多种物种的化学羽流进行表征。当前的宽带系统(例如差分光吸收光谱法(DOAS))具有远距离传播的局限性,或者要求发射器功率电平对于在城市环境中运行不安全。常规上利用被动光光谱成像系统来探测空气中的化学物质,该系统利用可见光和红外波长的太阳散射吸收或利用背景热辐射吸收。无源方法在各种范围内或在不利的大气条件下都有操作局限性,因为源强度和光谱通常是未知变量。测量为开发使用多种波长计算大气物质浓度的算法提供了动力。这些算法用于准备模拟并与超连续谱激光源的吸收数据的实验结果进行比较。 MODTRAN模型用于准备仿真,还用于开发其他算法,以选择与MWIR(中波红外)成像仪配合使用的过滤器,以检测甲烷,丙烷,汽油蒸气和柴油蒸气的羽状流。这些模拟是为在俯视机载平台上运行的系统设计而准备的。与碳氢化合物成像系统一起使用的数据分析算法会从视场中提取感兴趣的区域以进​​行进一步分析。针对从机载平台运行的扫描DAS(差分吸收光谱)激光雷达系统提出了误差分析从地形目标散布的信号。该分析内置于模拟程序中,用于测试实时数据处理方法,并评估由于地面反射率变化而对路径柱浓度测量产生的影响。一个示例模拟提供了对预期的甲烷数据的描述。这项研究的一些成就包括:(1)演示了一种使用低功率超连续谱源的新型激光雷达技术,用于检测和测量大气物质的浓度。 (2)一种新的具有优异性能的多波长算法被用于处理长距离超连续谱激光吸收仪收集的光谱数据。 (3)开发了用于扫描DAS系统的地形散射的仿真程序,并已使用ITT Industries ANGEL(机载天然气排放激光雷达)3-λ激光雷达系统的飞机数据进行了验证。 (4)开发了DAS的错误分析程序,并将其应用于机载平台的测量和模拟。 (5)开发了一种选择滤光片的方法,并测试了其与红外成像仪一起使用的能力,该红外成像仪可优化检测在中波红外中吸收的各种碳氢化合物。 (6)描述了傅里叶分析算法的发展,该算法允许用户在成像系统的视野中将烃羽从背景特征中快速分离出来。本文介绍的工作描述了一种使用已知来源的测量方法。有源系统的发射功率低,同时保留了宽带和超长路径吸收操作的优点。还描述了一种优化的无源成像系统,该系统可在中红外的3至4毫米窗口中运行。这种主动和被动仪器可以配置为优化对几种烃类气体以及许多其他感兴趣物种的检测。

著录项

  • 作者

    Brown, David M.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Electronics and Electrical.;Remote Sensing.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号