首页> 外文学位 >Inverse elastostatic stress analysis for biological structures.
【24h】

Inverse elastostatic stress analysis for biological structures.

机译:生物结构的逆弹性应力分析。

获取原文
获取原文并翻译 | 示例

摘要

Mechanical factors such as stresses play a critical role in the development, growth, remodeling and damage of biological tissues. Given the importance of stress, a major task of biomechanical analysis is to estimate the stress distribution in a living organ. Although the principles and methodologies for mechanical stress analysis have been long established, the application in living biological systems presents new challenges due to mostly the lack of information. For examples, the issue of not knowing the initial stress-free configuration in the current practice of patient-specific analysis arises since the input geometry derived from medical images may correspond to a deformed state. The stress analysis in such cases gives rise to an inverse elastostatic problem for which the deformed state is given and the initial configuration and stress are sought.;This work is a comprehensive development of computational methods for inverse elastostatics and investigation of its biomechanical applications. The work consists of three parts. The first part focuses on developing finite element formulations for the inverse elastostatic method. Targeting the biological soft tissues that are generally incompressible and fibrous anisotropic, the inverse formulations are provided for general 3D continua and thin-walled structures modeled as shells and membranes.;The second part presents several important biomechanical applications in vascular biomechanics. Stress analysis with the inverse elastostatic method suits naturally to pressurized vascular organs, which evaluates the structural integrity and sometimes even provides information on the pathological condition of vascular organs. In addition, it is demonstrated the inverse method can be used to predict the residual stress which is known to present in most vascular organs.;The third part of the work is to evaluate the sensitivity of stress solution to material model. This is an important ingredient of this study because patient-specific material properties are difficult to obtain. It will be shown the stress distribution in thin-walled structures is insensitive to material properties to a great extent. This offers a possible way of determining stresses accurately without knowing the true elastic material behavior.;In summary, the present inverse elastostatic method provides a new paradigm of stress analysis for biological structures.
机译:诸如应力之类的机械因素在生物组织的发育,生长,重塑和破坏中起着至关重要的作用。考虑到压力的重要性,生物力学分析的主要任务是估计生物器官中的压力分布。尽管机械应力分析的原理和方法已经建立了很长的时间,但由于缺乏信息,在生物系统中的应用面临着新的挑战。例如,由于从医学图像得出的输入几何形状可能对应于变形状态,因此出现了在患者特定分析的当前实践中不知道初始无应力配置的问题。在这种情况下的应力分析会引起反弹性静力问题,该问题给出了变形状态并寻求初始构型和应力。这项工作是反弹性静力学计算方法的全面发展及其生物力学应用的研究。这项工作包括三个部分。第一部分着重于为逆弹性静力学方法开发有限元公式。针对通常不可压缩且具有纤维各向异性的生物软组织,提供了针对一般3D连续体和建模为壳和膜的薄壁结构的逆配方。第二部分介绍了在血管生物力学中的一些重要生物力学应用。用逆弹力静力学方法进行的应力分析自然适用于加压血管器官,该器官可以评估结构完整性,有时甚至可以提供有关血管器官病理状况的信息。另外,证明了逆方法可以用来预测大多数血管器官中已知的残余应力。第三部分工作是评估应力解对材料模型的敏感性。这是这项研究的重要组成部分,因为难以获得患者特定的材料特性。可以看出,薄壁结构中的应力分布在很大程度上对材料特性不敏感。这提供了在不知道真实弹性材料行为的情况下准确确定应力的可能方法。总之,本发明的逆弹性方法为生物结构提供了应力分析的新范例。

著录项

  • 作者

    Zhou, Xianlian.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号