首页> 外文学位 >Models and algorithms for a rail transit line alignment using GIS and genetic algorithm.
【24h】

Models and algorithms for a rail transit line alignment using GIS and genetic algorithm.

机译:使用GIS和遗传算法的轨道交通线对准模型和算法。

获取原文
获取原文并翻译 | 示例

摘要

The increase in commuting populations and transit ridership in urban areas has given rise to the need for building new transit lines or extending existing ones. The objective of this dissertation research is to perform a microscopic analysis and develop models and algorithms for a rail transit alignment using Geographical Information System (GIS) and Genetic Algorithm (GA) in a given study corridor. Previous research suggests that several analytical methods have been developed to design various components of a transit system, such as optimization of station spacings, route spacing, and route length for rail transit alignments. While all this research has contributed substantially towards the development of a transit system, the applicability of these theoretical models remains limited for real-world problems.;The present research aims to perform a microscopic analysis in a given study corridor to obtain the locations and sequence of stations considering many-to-one travel pattern, variable demand for transit, identification of feasible locations for stations and optimization of various objective functions for station locations for an optimal rail transit alignment through GIS-GA integration.;An optimization algorithm is developed for optimizing station locations for three types of rail transit systems, namely (1) an on-the-ground rail transit system; (2) an underground cut and cover rail transit system, and (3) an underground deep tunnel rail transit system. The algorithm is developed in two stages. In the first stage, the search space is defined by identifying the potential station locations using a GIS and in the second stage a GA is applied to perform the optimal search.;The optimization model for station location is developed using several objective functions of demand and cost as both influence the optimal rail transit alignment. The first objective is to minimize the total system cost per person, which is a function of user cost, operator cost, location cost and variable demand. A bilevel optimization model is introduced for the station location optimization problem. In this model a number of clusters of riders are determined from local population data at the lower level in order to estimate demand and optimize the objective functions at the upper level. The second objective is to maximize the ridership or the service coverage. The user cost per person is minimized separately as the third objective because the user cost is one of the most important decision-making factors for using the transit system. A decision can be made based on the preferred parameters by a transit-planner based on the results obtained using different objective functions. A variable demand case is considered in the research which replicates a realistic scenario that can be expected while planning a rail transit line Optimal solutions are obtained by running an iterative process of re-estimating the variable transit demand by varying the locations and sequence of stations, which results in change in travel time and potential transit demand.;Once the optimal station locations are obtained, the stations are interconnected using a suitable rail line alignment. This is done by connecting each pair of stations using a GIS and GA based algorithm (customized Highway Alignment Optimization model).;The proposed model is applied on an artificially generated study area of size 20 miles x 20 miles around Washington DC in USA. The efficiency of the proposed algorithm is verified on small scale examples first. Then the model is applied on radial corridors of 12 miles x 3 miles and a diagonal corridor of area 22 mile x 3 mile within the study area to obtain optimal rail transit alignments. The results show that a new rail line alignment can be established in a comprehensive, consecutive and automated process using the proposed model. Better results are obtained for radial corridors than for the diagonal corridor as many-to-one travel pattern is considered for the study. The iterative approach in the algorithm increases computational complexities but produces near optimal solution for a rail transit alignment. The results give a planner an initial idea about which objective functions to use for a specific type of study corridor under consideration.
机译:城市地区通勤人口的增加和过境乘客的增加,导致了对建设新的过境线或扩展现有过境线的需求。本论文的研究目的是在给定的研究走廊中使用地理信息系统(GIS)和遗传算法(GA)进行微观分析并开发轨道交通路线的模型和算法。先前的研究表明,已经开发出几种分析方法来设计公交系统的各个组成部分,例如优化车站间距,路线间距和铁路路线路线的路线长度。尽管所有这些研究都为交通系统的发展做出了巨大贡献,但是这些理论模型的适用性仍然限于现实世界中的问题。本研究旨在在给定的研究走廊中进行微观分析,以获得位置和顺序考虑多对一的出行方式,变迁的交通需求,确定车站的可行位置以及优化车站位置的各种目标函数,以通过GIS-GA集成实现最佳轨道交通路线的车站的设计;优化三种类型的轨道交通系统的车站位置,即(1)地面轨道交通系统; (2)地下挖填铁路轨道交通系统,以及(3)地下深隧道轨道交通系统。该算法分两个阶段开发。在第一阶段,通过使用GIS识别潜在的站点位置来定义搜索空间,在第二阶段,使用GA进行最佳搜索。;使用需求和需求的几个目标函数,开发站点位置的优化模型。成本都会影响最佳的轨道交通路线。第一个目标是使每人的总系统成本最小化,这是用户成本,运营商成本,位置成本和可变需求的函数。针对车站位置优化问题引入了双层优化模型。在该模型中,从较低级别的本地人口数据确定了许多骑手聚类,以便估算需求并优化较高级别的目标函数。第二个目标是使乘客量或服务范围最大化。作为第三个目标,每人的用户成本被分别最小化,因为用户成本是使用公交系统的最重要的决策因素之一。运输计划人员可以根据首选参数,根据使用不同目标函数获得的结果做出决策。在研究中考虑了可变需求的情况,该案例复制了在规划铁路运输线时可以预期的现实情况。通过运行迭代过程,通过改变车站的位置和顺序来重新估计可变的运输需求,可以获得最佳的解决方案,一旦获得最佳的车站位置,就可以使用合适的铁路路线将车站相互连接起来。这是通过使用基于GIS和GA的算法(定制的公路路线优化模型)连接每对车站来完成的;所提出的模型应用于人工生成的美国华盛顿特区周围20英里x 20英里的研究区域。首先在小规模实例上验证了该算法的有效性。然后,将模型应用于研究区域内12英里x 3英里的径向走廊和22英里x 3英里的对角走廊,以获得最佳的轨道交通路线。结果表明,使用所提出的模型,可以在全面,连续和自动化的过程中建立新的铁路路线对准。对于径向走廊,比对角走廊获得更好的结果,因为该研究考虑了多对一的旅行方式。该算法中的迭代方法增加了计算复杂性,但为轨道交通路线生成了接近最佳的解决方案。结果为规划人员提供了一个初步的想法,即正在考虑将哪种目标函数用于特定类型的学习走廊。

著录项

  • 作者

    Samanta, Sutapa.;

  • 作者单位

    Morgan State University.;

  • 授予单位 Morgan State University.;
  • 学科 Engineering Civil.;Transportation.
  • 学位 D.Eng.
  • 年度 2008
  • 页码 287 p.
  • 总页数 287
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;综合运输;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号