首页> 外文学位 >On-board energy management for high-speed aerospace vehicles: System and component-level energy-based optimization and analysis.
【24h】

On-board energy management for high-speed aerospace vehicles: System and component-level energy-based optimization and analysis.

机译:高速航空航天器的机载能量管理:基于系统和组件级能量的优化和分析。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation addresses in detail three main topics for advancing the state-of-the-art in hypersonic aerospace systems: (1) the development of a synergistic method based on entropy generation in order to analyze, evaluate, and optimize vehicle performance, (2) the development and analysis of innovative unconventional flow-control methods for increasing vehicle performance utilizing entropy generation as a fundamental descriptor and predictor of performance, and (3) an investigation of issues arising when evaluating (predicting) actual flight vehicle performance using ground test facilities.; Vehicle performance is analyzed beginning from fundamental considerations involving fluid and thermodynamic balance relationships. The results enable the use of entropy generation as the true "common currency" (single loss parameter) for systematic and consistent evaluation of performance losses across the vehicle as an integrated system. Innovative flow control methods are modeled using state of the art CFD codes in which the flow is energized in targeted local zones with emphasis on shock wave modification. Substantial drag reductions are observed such that drag can decrease to 25% of the baseline. Full vehicle studies are then conducted by comparing traditional and flow-controlled designs and very similar axial force is found with an accompanying increase in lift for the flow-control design to account for on-board energy-addition components. Finally, a full engine flowpath configuration is designed for computational studies of ground test performance versus actual flight performance with emphasis on understanding the effect of ground-based vitiate (test contaminant). It is observed that the presence of vitiate in the test medium can also have a significant first-order effect on ignition delay as well as the thermodynamic response to a given heat release in the fuel.
机译:本论文详细讨论了三个主要主题,以推进高超音速航空航天系统的最新技术:(1)开发基于熵产生的协同方法,以分析,评估和优化车辆性能,(2 )开发和分析创新的非常规流量控制方法,以熵的产生作为性能的基本描述和预测指标,以提高飞行器的性能;(3)调查使用地面测试设施评估(预测)实际飞行器性能时出现的问题。;从涉及流体和热力学平衡关系的基本考虑开始分析车辆性能。结果使得能够将熵生成用作真正的“通用货币”(单一损失参数),以便对作为集成系统的整车性能损失进行系统且一致的评估。使用最新的CFD代码对创新的流量控制方法进行建模,在该CFD代码中,在目标局部区域对流量进行激励,重点是冲击波的修改。观察到阻力大幅度降低,因此阻力可以降低到基线的25%。然后,通过比较传统设计和流量控制设计进行整车研究,发现非常相似的轴向力与流量控制设计的升程相应增加,以说明车载能量添加组件。最后,设计了一个完整的发动机流路配置,用于对地面测试性能与实际飞行性能进行计算研究,重点是了解基于地面的胶体(测试污染物)的影响。可以看出,在测试介质中存在葡萄酸盐还可以对点火延迟以及对燃料中给定的热量释放的热力学响应具有显着的一级影响。

著录项

  • 作者

    Taylor, Trent Matthew.;

  • 作者单位

    University of Missouri - Rolla.;

  • 授予单位 University of Missouri - Rolla.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号