首页> 外文学位 >Computational modeling of heat transfer and visco-plastic flow in friction stir welding.
【24h】

Computational modeling of heat transfer and visco-plastic flow in friction stir welding.

机译:搅拌摩擦焊接中传热和粘塑性流动的计算模型。

获取原文
获取原文并翻译 | 示例

摘要

With a focus to develop a quantitative understanding of the FSW process, a comprehensive three dimensional heat transfer and plastic flow model is developed. The model can predict variables such as temperature and velocity fields and torque based on the given welding parameters like weld velocity, tool rotational speed and axial pressure. It considers tool design dependent spatially variable heat generation rates, deformational work, non-Newtonian viscosity as a function of local strain rate, temperature and the nature of the material and temperature dependent thermal conductivity, specific heat capacity and yield stress. It is shown that the temperature fields, cooling rates, the plastic flow fields and the geometry of the thermo-mechanically affected zone (TMAZ) can be adequately described by solving the equations of conservation of mass, momentum and energy in three dimensions with appropriate boundary conditions and constitutive equations for viscosity. The model is tested for four different alloys: (1) AA 6061-T6, (2) 1018 Mn steel, (3) 304L stainless steel and (4) Ti-6Al-4V which have widely different thermophysical and rheological properties. Numerically computed temperature fields, variations of peak temperatures with FSW variables and TMAZ geometry were compared with the experimental results.;Currently, due to unknown parameters in existing transport phenomena based models, the computed temperature and velocity fields and torque may not always agree with the corresponding experimentally determined values and may not show the same trend as experimental results for a range of welding variables. Here, it is shown that this problem can be solved by combining the rigorous phenomenological process sub-model with a multivariable optimization scheme called Differential Evolution. The values of the uncertain model input parameters from a limited volume of independent experimental data which includes temperature measurements obtained using thermocouples and torque measured using dynamometers. This approach resulted in agreement between the phenomenological model and the experimental results with a greater degree of certainty. It is tested for FSW of: (1) dissimilar AA 6061-T6 to AA 1200, (2) 1018 Mn steel and (3) Ti-6Al-4V. Independent thermocouple and dynamometer measurements are also used for validation and verification of results. Improvement in the reliability of the numerical model is an important first step towards increasing its practical usefulness.;Also, one of the reasons why current models do not find extensive applications is because they cannot be used to tailor weld attributes. The aim of the present research is to develop a reliable bi-directional model which can find wide use in manufacturing and process control. It is shown that by coupling a reliable model with an evolutionary search algorithm, we can find multiple sets of welding parameters to achieve a target peak temperature and cooling rate in welds. The model is tested for dissimilar welds of AA 6351 and AA 1200.;FSW is being increasingly used for dissimilar metal joining. Models are needed to calculate the redistribution of alloying elements when two alloys with dissimilar alloying element contents are joined. The transport and mixing of magnesium from Mg-rich AA 6061 alloy into a commercially pure aluminum AA 1200 was examined experimentally and numerically at various locations in the welded workpiece. The concentration of the solute is measured in transverse cross-sections across the weld-center line at various depths from the top surface of the workpiece. The measurement was done using electron probe micro-analysis (EPMA) of polished transverse-cut friction-stir welded samples. The comparison of the experimental and computed concentration profiles of magnesium shows imperfect mixing of the plasticized alloys during FSW. The plasticized material seem to move in layers without significant diffusive interlayer mixing.;A comprehensive model for FSW is developed with capability of calculating temperature fields, material flow patterns and concentration fields in both similar and dissimilar welds in three dimensions. The model is tested for the FSW of alloys with widely different thermophysical properties. A mechanism for improving reliability and ability to provide guidance to tailor weld attributes is incorporated into the model to increase its practical usefulness. This is done by by combining the transport phenomena based model with Differential Evolution algorithm to minimize the objective function based on limited volume of experimental thermal cycles and torque measurements. (Abstract shortened by UMI.)
机译:着重于对FSW过程的定量理解,开发了一个全面的三维传热和塑性流动模型。该模型可以根据给定的焊接参数(例如焊接速度,工具转速和轴向压力)预测变量,例如温度,速度场和扭矩。它考虑了工具设计取决于空间可变的热发生率,变形功,非牛顿粘度与局部应变率,温度和材料性质以及温度相关的热导率,比热容和屈服应力的关系。结果表明,通过求解具有适当边界的三个维度的质量,动量和能量守恒方程,可以充分描述温度场,冷却速率,塑性流场和热机械影响区的几何形状。条件和本构方程。该模型针对四种不同的合金进行了测试:(1)AA 6061-T6,(2)1018 Mn钢,(3)304L不锈钢和(4)Ti-6Al-4V,它们具有非常不同的热物理和流变性能。将数值计算的温度场,峰值温度随FSW变量和TMAZ几何形状的变化与实验结果进行了比较;当前,由于现有的基于运输现象的模型中的参数未知,因此计算出的温度场和速度场以及转矩可能并不总是与相应的实验确定值,对于一系列焊接变量,可能不会显示出与实验结果相同的趋势。在此表明,可以通过将严格的现象学过程子模型与称为“差异演化”的多变量优化方案相结合来解决此问题。来自有限数量的独立实验数据的不确定模型输入参数的值,其中包括使用热电偶获得的温度测量值和使用测功机测量的扭矩。这种方法导致现象学模型与实验结果之间具有更大的确定性。它的FSW测试如下:(1)与AA 1200不同的AA 6061-T6,(2)1018 Mn钢和(3)Ti-6Al-4V。独立的热电偶和测功机测量也用于结果的确认和验证。改善数值模型的可靠性是提高其实用性的重要的第一步。此外,当前模型未能得到广泛应用的原因之一是因为它们不能用于定制焊接属性。本研究的目的是开发可在制造和过程控制中广泛使用的可靠双向模型。结果表明,通过将可靠的模型与进化搜索算法结合起来,我们可以找到多组焊接参数,以实现焊接中的目标峰值温度和冷却速率。该模型已针对AA 6351和AA 1200的异种焊缝进行了测试; FSW越来越多地用于异种金属连接。当两种合金元素含量不同的合金结合在一起时,需要模型来计算合金元素的再分布。在焊接工件的各个位置上,通过实验和数值研究了镁从富镁AA 6061合金到商业纯铝AA 1200中的传输和混合。溶质的浓度是在距工件顶面不同深度的焊缝中心线的横截面中测量的。使用电子探针显微分析(EPMA)对抛光的横切式搅拌摩擦焊接样品进行测量。实验和计算的镁浓度曲线的比较表明,FSW过程中增塑合金的混合不完美。增塑的材料似乎在没有明显的扩散层间混合的情况下在层中移动。;建立了FSW的综合模型,该模型具有在三个维度上计算相似和不相似焊缝中的温度场,材料流型和浓度场的能力。该模型针对热物理性质差异很大的合金的FSW进行了测试。模型中增加了一种提高可靠性和提供指导以调整焊接属性的能力的机制,以提高其实用性。这是通过将基于运输现象的模型与差分演化算法相结合以基于有限的实验热循环和扭矩测量值来最小化目标函数来完成的。 (摘要由UMI缩短。)

著录项

  • 作者

    Nandan, Rituraj.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号