首页> 外文学位 >Spatio-temporal adaptive radar clutter mitigation in nonstationary environments.
【24h】

Spatio-temporal adaptive radar clutter mitigation in nonstationary environments.

机译:非平稳环境中的时空自适应雷达杂波缓解。

获取原文
获取原文并翻译 | 示例

摘要

Sensor failures in large uniform linear arrays cause significant degradation of the conventional beampattern. Simply zeroing the faulty elements results in high beamformer sidelobes. Adaptive beamforming using only the good sensors provides asymptotically optimal array gain only if sufficient training data is available. In highly nonstationary environments, obtaining this asymptotic performance becomes increasingly hard with large arrays. On the other hand, the multi-layer structure of the ionosphere results in multi-mode propagation in high frequency over-the-horizon radar (OTHR), which causes the Doppler spreading of the backscattered clutter. In ideal conditions, the Doppler spectrum is dominated by two strong peaks called the Bragg lines due to resonant backscattering from ocean waves. However, in multi-mode propagation, there are multiple sets of Bragg lines shifted in Doppler due to propagation from different layers of ionosphere, and thus slow moving ships with small Doppler shifts are masked by the clutter. This thesis addresses the problem of radar clutter mitigation in nonstationary environments. Spatial methods for the faulty sensor problem and spatio-temporal methods for Doppler spread clutter problem due to multi-mode ionospheric propagation are discussed in this thesis. The proposed beamspace adaptive channel compensation (BACC) method adaptively reconstructs the receive beams of the full array so that strong directional components have minimal leakage into the adjacent beams. The results of four single snapshot spatial beamforming methods, BACC, minimum variance (MV) adaptive beamforming using an augmented Toeplitz covariance matrix, principal solution beamforming, and conventional beamforming in the presence of faulty sensors are compared in terms of detection performance, and unmasking of targets in estimated range-Doppler spectra. The simulation and real data results suggest that BACC provides as much as 10 dB improvement in signal to clutter-plus-noise ratio compared to conventional methods. For multi-mode ionospheric propagation problem, the proposed wavefront adaptive sensing (WAS) method combines MV adaptive beamforming and blind source separation (BSS). The signal-free covariance matrix is formed from the separated clutter components using BSS, and used in MV beamforming to suppress the clutter. In mismatched steering angle scenarios, WAS outperforms MV adaptive beamforming at high SNR and avoids the threshold effects of BSS at low SNR.
机译:大型均匀线性阵列中的传感器故障会导致传统波束图的严重退化。简单地将故障元素清零会导致高波束形成器旁瓣。仅当有足够的训练数据可用时,仅使用良好传感器的自适应波束成形才能提供渐近最佳阵列增益。在高度不稳定的环境中,使用大型阵列很难获得这种渐近性能。另一方面,电离层的多层结构会导致高频超视距雷达(OTHR)中的多模传播,从而导致后向散射杂波的多普勒扩展。在理想条件下,由于海浪引起的共振反向散射,多普勒频谱由两个称为布拉格线的强峰值所控制。但是,在多模式传播中,由于来自电离层不同层的传播,多普勒中有多组布拉格线发生偏移,因此,具有小多普勒频移的慢速航行船会被杂波掩盖。本文解决了非平稳环境下的雷达杂波抑制问题。本文讨论了多模式电离层传播引起的传感器故障问题的空间方法和多普勒扩展杂波问题的时空方法。所提出的波束空间自适应信道补偿(BACC)方法自适应地重构整个阵列的接收波束,以使强方向分量对相邻波束的泄漏最小。比较了四种单快照空间波束成形方法,BACC,使用增强的Toeplitz协方差矩阵的最小方差(MV)自适应波束成形,主解决方案波束成形以及存在故障传感器的情况下常规波束成形的结果,在检测性能和未遮罩方面进行了比较。估计的距离多普勒光谱中的目标。仿真和实际数据结果表明,与传统方法相比,BACC可将信噪比提高多达10 dB。对于多模式电离层传播问题,所提出的波前自适应传感(WAS)方法将MV自适应波束形成和盲源分离(BSS)相结合。使用BSS由分离的杂波分量形成无信号协方差矩阵,并将其用于MV波束成形以抑制杂波。在转向角不匹配的情况下,WAS在高SNR情况下优于MV自适应波束形成,并避免了在低SNR情况下BSS的阈值效应。

著录项

  • 作者

    Kazanci, Oguz Rahmi.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号