首页> 外文学位 >Physiology and pathophysiology of adipocytes and pancreatic beta cells in obesity and diabetes mellitus.
【24h】

Physiology and pathophysiology of adipocytes and pancreatic beta cells in obesity and diabetes mellitus.

机译:肥胖和糖尿病患者脂肪细胞和胰腺β细胞的生理和病理生理学。

获取原文
获取原文并翻译 | 示例

摘要

Obesity is an epidemic with rising prevalence worldwide. Obesity poses a major risk for chronic diseases including hypertension, type II diabetes and cardiovascular disease. The uncontrolled expansion of adipose tissue is the key feature of obesity. In the past decade, the view of adipose tissue has undergone drastic change. Previously assumed to be merely an inert compartment for energy storage, it is now widely accepted that adipose tissue is a major endocrine organ. Adipokines secreted from adipocytes play critical roles in the initiation and progression of obesity-associated morbidities and mortalities. Adiponectin, a fat-derived hormone, is involved in insulin sensitization and whole body energy homeostasis. Dysregulation of adiponectin in the obese state is associated with insulin resistance, hypertension and cardiovascular disease. Adipocytes maintain tight control over circulating adiponectin levels, suggesting the existence of a complex, highly regulated biosynthetic pathway. However, the critical mediators of adiponectin maturation within the secretory pathway have not been elucidated. Previously, we found that a significant portion of de novo synthesized adiponectin is not secreted and retained in adipocytes. Here, we show that there is an abundant pool of properly folded adiponectin in the secretory pathway that is sequestered through thiol-mediated retention. Adiponectin is covalently bound to the chaperone ERp44 through disulfide bond within the lumen of endoplasmic reticulum (ER). An adiponectin mutant lacking cysteine 39 fails to stably interact with ERp44, demonstrating that this residue is the primary site mediating the covalent interaction. Another ER chaperone, Ero1-Lalpha, plays a critical role in the release of adiponectin from ERp44. Levels of both of these proteins are highly regulated in adipocytes and are influenced by the metabolic state of the cell. While less critical for the secretion of trimers, these chaperones play a major role in the assembly of higher order adiponectin complexes. Our data highlights the importance of post-translational events controlling the release of adiponectin from adipocytes. One mechanism of increasing circulating levels of adiponectin by PPARy agonists may be through selective upregulation of rate-limiting chaperones.;In the obese state, insulin resistance occurs in peripheral organs including skeletal muscle, adipose tissue and liver. To compensate for the desensitization of insulin signaling and to maintain glucose homeostasis, pancreatic beta cells increase the production and secretion of insulin. However, beta cell dysfunction emerges due to glucotoxicity and lipotoxicity and eventually leads to cell death when insulin resistance persists. Frank diabetes develops when insulin secretion cannot match the demand for sustaining euglycemia. To study the physiology and pathophysiology of beta cells during diabetes progression, several mouse models have been applied which have provided insights for the mechanisms of beta cell dysfunction and cell death. However, these animal models utilize acute, extreme, nonphysiological insults and some of them do not show significant beta cell recovery after injury. To evaluate beta cell dysfunction in a physiologically-relevant fashion, we created a novel mouse model for inducible and reversible ablation of pancreatic beta cells, the PANIC-ATTAC (pancreatic islet beta cell apoptosis through targeted activation of caspase 8). In this model, we efficiently induce beta cell apoptosis and concomitant hyperglycemia by administration of a chemical dimerizer which triggers apoptosis through caspase 8. Upon cessation of dimerizer treatment, the PANIC-ATTAC mice show significant beta cell recovery and restoration of euglycemia. We have used this mouse model to examine several anti-diabetic drugs including exendin-4, sitagliptin and a PPARgamma agonist. Additionally, during recovery, we find an increased population of Glut2 positive, insulin negative cells in the pancreas of PANIC-ATTAC mice which may represent a novel pool of potential beta cell precursors. The PANIC-ATTAC mouse model reveals many characteristic features that have not been described in existing models. The PANIC-ATTAC mouse model therefore has applications in many areas of diabetes research, allowing us to study survival mechanisms of beta cells during glucotoxic challenges, to identify beta cell precursors and to test the beneficial impact of pharmacological interventions.
机译:肥胖症是一种流行病,在世界范围内流行率正在上升。肥胖对包括高血压,II型糖尿病和心血管疾病在内的慢性疾病构成重大风险。脂肪组织的不受控制的膨胀是肥胖的关键特征。在过去的十年中,脂肪组织的观点发生了翻天覆地的变化。以前假定它只是一个用于存储能量的惰性隔室,现在人们普遍认为脂肪组织是主要的内分泌器官。脂肪细胞分泌的脂肪因子在肥胖相关的发病率和死亡率的发生和发展中起关键作用。脂联素,一种脂肪来源的激素,参与胰岛素增敏和全身能量稳态。肥胖状态下脂联素的失调与胰岛素抵抗,高血压和心血管疾病有关。脂肪细胞对循环脂联素水平保持严格控制,表明存在复杂的,高度调节的生物合成途径。但是,尚未阐明脂联素在分泌途径中成熟的关键介质。以前,我们发现从头合成脂连蛋白的大部分没有被分泌并保留在脂肪细胞中。在这里,我们表明在分泌途径中存在大量折叠的脂联素,这些脂联素通过硫醇介导的保留被隔离。脂联素通过内质网(ER)内腔中的二硫键与伴侣ERp44共价结合。缺少半胱氨酸39的脂联素突变体无法与ERp44稳定相互作用,表明该残基是介导共价相互作用的主要位点。另一种ER伴侣Ero1-Lalpha在从ERp44释放脂联素中起关键作用。这两种蛋白质的水平在脂肪细胞中受到高度调节,并受细胞代谢状态的影响。这些伴侣分子虽然对三聚体的分泌不太重要,但它们在高阶脂联素复合物的组装中起主要作用。我们的数据强调了翻译后事件控制脂联素从脂肪细胞释放的重要性。通过PPARγ激动剂增加脂联素循环水平的一种机制可能是通过选择性限制速率的伴侣蛋白的上调。在肥胖状态下,胰岛素抵抗发生在包括骨骼肌,脂肪组织和肝脏在内的周围器官中。为了补偿胰岛素信号转导的脱敏并维持葡萄糖稳态,胰腺β细胞增加了胰岛素的产生和分泌。然而,由于葡萄糖毒性和脂毒性,β细胞功能障碍出现,并且当胰岛素抵抗持续存在时最终导致细胞死亡。当胰岛素分泌无法满足维持正常血糖的需求时,就会发生弗兰克糖尿病。为了研究糖尿病进展过程中β细胞的生理和病理生理,已应用了几种小鼠模型,这些模型为β细胞功能障碍和细胞死亡的机制提供了见识。但是,这些动物模型利用的是急性的,极端的,非生理性的损伤,并且其中一些在损伤后并未显示出明显的β细胞恢复。为了以生理相关的方式评估β细胞功能异常,我们创建了一种新型的小鼠模型,用于胰腺β细胞的可诱导和可逆性消融,PANIC-ATTAC(通过靶向激活caspase 8的胰岛β细胞凋亡)。在该模型中,我们通过施用化学二聚体有效地诱导β细胞凋亡和伴随的高血糖症,该化学二聚体通过caspase 8触发细胞凋亡。二聚体治疗停止后,PANIC-ATTAC小鼠显示出显着的β细胞恢复和正常血糖的恢复。我们已经使用该小鼠模型检查了几种抗糖尿病药物,包括exendin-4,西他列汀和PPARgamma激动剂。此外,在恢复过程中,我们发现PANIC-ATTAC小鼠胰腺中Glut2阳性胰岛素阴性细胞的数量增加,这可能代表了潜在的β细胞前体的新集合。 PANIC-ATTAC鼠标模型揭示了许多现有模型中未描述的特征。因此,PANIC-ATTAC小鼠模型在糖尿病研究的许多领域都有应用,使我们能够研究在糖毒性挑战中β细胞的存活机制,鉴定β细胞前体并测试药理学干预的有益影响。

著录项

  • 作者

    Wang, Zhao.;

  • 作者单位

    Yeshiva University.;

  • 授予单位 Yeshiva University.;
  • 学科 Biology Molecular.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 235 p.
  • 总页数 235
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号