首页> 外文学位 >Characterization of thermal challenges in electronics: Leakage current, co-architectural design and rack level cooling.
【24h】

Characterization of thermal challenges in electronics: Leakage current, co-architectural design and rack level cooling.

机译:电子学中的热挑战的特征:泄漏电流,共同架构设计和机架级冷却。

获取原文
获取原文并翻译 | 示例

摘要

Part-1 of the thesis addresses a device level issue, "Static Power Consumption---Silicon on Insulator Metal Oxide Semiconductor Field Effect Transistor". The static power consumption due to leakage current plays a significant part in semiconductor devices, as the device dimensions continue to shrink. Low power dissipation is one of the critical factors needed to achieve high performance in a chip. New methods are continuously being implemented for reduction of leakage current in deep sub micron ultra thin SOI MOSFET using device simulator tools. In this paper, an 18nm gate length ultra thin SOI MOSFET is simulated for different silicon body thicknesses and the leakage current is determined by using the device simulator, MEDICI(TM). It is demonstrated that MEDICI(TM) device simulations is a good tool that can effectively be used for ultra thin SOI MOSFET devices to study the effect of design parameters on the leakage current.;Part-2 of the thesis again focuses on a device level issue, "Multi-Objective optimization entailing computer architecture and thermal design for non-uniformly powered microprocessors". Microprocessors continue to grow in capabilities, complexity and performance. Microprocessors typically integrate functional components such as logic and level two (L2) cache memory in their architecture. This functional integration of logic and memory results in improved performance of the microprocessor. However, the integration also introduces a layer of complexity in the thermal design and management of microprocessors. As a direct result of functional integration, the power map on a microprocessor is typically highly non-uniform and the assumption of a uniform heat flux across the chip surface has been shown to be invalid post Pentium II architecture. The active side of the die is divided into several functional blocks with distinct power assigned to each functional block. A lot of work has been done addressing this issue with a need of thermally aware computer architecture with a concurrent design approach based on thermal and device clock performance. Previous work has been done to minimize the thermal resistance of the package by optimizing the distribution of the non-uniform powered functional blocks with different power matrices. The study also provided design guidelines to minimize thermal resistance for any number of functional blocks for a given non-uniformly powered microprocessor. This analysis, however, had no constraints placed on the redistribution of functional blocks regarding the total wiring length of a particular configuration of functional blocks to satisfy electrical timing and computational performance requirements.;Part-3 of the thesis deals with system level issue, "Rack Level Cooling". Computational Fluid Dynamics (CFD) is an integral part in the development of new products. A telecommunication cabinet has many components; therefore before the cabinet is manufactured it is necessary to know the thermal stability of the cabinet. It is extremely ineffective both in time and cost to build prototypes and test them (build and break approach). A CFD tool comes in handy for these kinds of problems where in lots of configurations can be modeled and tested in short periods of time. Based on the CFD results, a prototype cabinet is built and tested experimentally. Thus CFD tool allows for significant savings in both development and production. The development savings are realized by not having to physically build and test multiple configurations and the production savings are realized from cost reduction in the design.;This paper deals with design and thermal analysis of a Commscope telecommunication cabinet, RBA48. This cabinet is completely sealed and is cooled by Heat Exchangers (HX) and TEC modules. This kind of cooling technology is first tried in this family of cabinets by Commscope, hence the different design configurations needs to be tested for thermal stability. The analysis of RBA48 concentrates on (1) The optimum door opening for the TEC modules, (2) Selection of HX fans---Outer loop fans, (3) Position of Bay Fans in the Bay Fan Tray. The CFD code Flotherm by Mentor Graphics is used for the analysis. (Abstract shortened by UMI.)
机译:论文的第1部分讨论了器件级别的问题,“静态功耗-绝缘体金属氧化物半导体场效应晶体管上的硅”。随着器件尺寸的不断缩小,由泄漏电流引起的静态功耗在半导体器件中起着重要的作用。低功耗是实现芯片高性能所需的关键因素之一。正在使用器件仿真器工具不断实施新方法,以减少深亚微米超薄SOI MOSFET中的泄漏电流。在本文中,针对不同的硅体厚度,对18nm栅极长度的超薄SOI MOSFET进行了仿真,并使用器件仿真器MEDICI™确定了泄漏电流。结果表明,MEDICI(TM)器件仿真是一种很好的工具,可以有效地用于超薄SOI MOSFET器件,以研究设计参数对漏电流的影响。;论文的第二部分再次关注器件级问题,“多目标优化需要针对非均匀供电微处理器的计算机体系结构和散热设计”。微处理器的功能,复杂性和性能不断增长。微处理器通常在其体系结构中集成功能组件,例如逻辑和二级(L2)高速缓存。逻辑和存储器的这种功能集成可提高微处理器的性能。但是,集成还为微处理器的热设计和管理带来了一层复杂性。功能集成的直接结果是,微处理器上的功率图通常高度不均匀,并且在奔腾II架构之后,假设整个芯片表面的热通量均假定为无效。管芯的有源侧被分成几个功能块,每个功能块分配有不同的功率。针对热问题的计算机架构的需要,已经有很多工作需要解决,并且需要基于热和设备时钟性能的并发设计方法。通过优化具有不同功率矩阵的非均匀供电功能块的分布,已经进行了以前的工作来最小化封装的热阻。该研究还提供了设计指南,以使给定非均匀供电微处理器的任何数量的功能块的热阻最小。然而,这种分析对于功能块的特定配置的总布线长度的满足,没有限制功能块的重新分布,以满足电气时序和计算性能的要求。论文的第三部分涉及系统级问题,“机架冷却”。计算流体动力学(CFD)是新产品开发中不可或缺的一部分。电信柜具有许多组件。因此在制造机柜之前,有必要了解机柜的热稳定性。建立原型和测试它们(构建和破坏方法)在时间和成本上都是极其无效的。对于这类问题,CFD工具非常有用,因为可以在短时间内对许多配置进行建模和测试。根据CFD结果,建立了原型柜并进行了实验测试。因此,CFD工具可大大节省开发和生产成本。无需物理地构建和测试多种配置即可实现开发节省,而设计成本的降低则可以节省生产成本。;本文涉及Commscope电信机柜RBA48的设计和热分析。该机柜是完全密封的,并通过热交换器(HX)和TEC模块进行冷却。 Commscope在该系列机柜中首先尝试了这种冷却技术,因此需要测试不同的设计配置的热稳定性。 RBA48的分析重点在于(1)TEC模块的最佳门打开;(2)HX风扇的选择-外环风扇;(3)海湾风扇在海湾风扇托盘中的位置。 Mentor Graphics的CFD代码Flotherm用于分析。 (摘要由UMI缩短。)

著录项

  • 作者

    Raju, Uthaman.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2008
  • 页码 73 p.
  • 总页数 73
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号