首页> 外文学位 >Computational design and analysis of high strength austenitic TRIP steels for blast protection applications.
【24h】

Computational design and analysis of high strength austenitic TRIP steels for blast protection applications.

机译:用于爆炸防护应用的高强度奥氏体TRIP钢的计算设计和分析。

获取原文
获取原文并翻译 | 示例

摘要

Recent assessment of material property requirements for blast resistant applications, especially for the naval ship hulls, has defined the need to design steels with high stretch ductility and fragment penetration resistance, along with high strength and adequate toughness. Using a system based computational materials design approach, two series of austenitic (gamma) steels have been designed -- BA120 to exhibit high uniform ductility in tension (>20%) and SA120 to exhibit high tensile (>20%) and shear strains (>50%), with both alloys maintaining high levels of yield strength (120 ksi/827 MPa) at room temperature under Tensile and Shear stress states. BA120 is low chromium (4 wt %) high nickel (23.5 wt %) alloy while the SA120 is a high chromium design (10 wt %), both designed for non-magnetic behavior.;The Thermo-Calc computational thermodynamics software in conjunction with a Ni-DATA 7 thermodynamic database has been used to model precipitation strengthening of the alloy, by quantifying the dependence of yield stress of austenitic steels on the mole fraction of the precipitated gamma' (Gamma Prime) Ni3(Ti, Al) phase. The required high strength has been achieved by the precipitation of spheroidal intermetallic gamma' -- phase of optimum diameter (15 nm) in equilibrium with the matrix at the standard aging temperature. Adequate Al and Ti with respect 5 to the Ni in the matrix ensure enough gamma' phase fraction and number density of precipitates to provide the necessary strength. The predicted gamma' precipitation strengthening to 120-130 ksi for both BA120 and SA120 has been validated through both microhardness as well as static and dynamic tensile and shear tests conducted at room temperature. 3-D LEAP analysis of the aged specimens has shown the expected size and distribution of gamma' -- precipitates with good compositional accuracy of predicted values from the thermodynamic models, for both matrix austenite and gamma'.;Metastable austenitic steels have been known to exhibit high uniform elongation, tensile strength under static and dynamic loads, and high fracture toughness due to mechanically induced martensitic transformation. The phenomenon of Transformation-Induced Plasticity (TRIP) arising from the FCC → BCC martensitic transformation has been used to create theoretical parametric models of matrix stability, flow stabilization and fragment resistance under tension and shear loads which were then applied to obtain significant improvements in uniform ductility for both stress states. These stability models have then been calibrated through experimental data from static and dynamic/adiabatic tensile tests and characteristic MSsigma temperature measurements from an earlier TRIP prototype to support the new alloy designs. BA120 and SA120 alloys are designed to undergo stress-assisted martensite transformation at a pre-determined critical temperature (MSsigma) thereby optimizing transformation plasticity to achieve the desired performance improvements.;The new prototype alloy BA120 has demonstrated improved mechanical properties with a high strength of 124 ksi (845 MPa) and ∼ 150 ksi (1040 MPa) under static and dynamic tensile loading at room temperature. The measured uniform ductility for BA120 under quasi-static 6 tensile loading is 21% at room temperature with high strain hardening leading to UTS of 246 ksi (1696 MPa). The UTS under dynamic loading is ∼ 195 ksi (1344 MPa). The uniform ductility is consistent (21% - 24%) over a wide range of temperature (25°C -- 65°C). Mechanical testing demonstrates the required MSsigma temperature, and 3-D LEAP microanalysis confirms the predicted matrix composition as well as the particle size and distribution of strengthening precipitates. FSI simulation experiments conducted on BA120 to analyze the material behavior under actual blast loading have shown promising results in terms of strains exceeding 40%. A prescribed simple heat treatment process comprising of solutionizing treatment at 950oC for 1 hour followed by a single-step temper at 750°C for 10 hr has achieved the desired performance goals of strength and uniform ductility.
机译:最近对用于防爆应用(尤其是海军舰船船体)的材料性能要求的评估确定了对设计具有高拉伸延展性和抗碎屑穿透性以及高强度和足够韧性的钢的需求。使用基于系统的计算材料设计方法,设计了两个系列的奥氏体(γ)钢-BA120表现出高的均匀拉伸延展性(> 20%)和SA120表现出高的延展性(> 20%)和剪切应变( > 50%),两种合金在室温下在拉伸和剪切应力状态下均保持较高的屈服强度(120 ksi / 827 MPa)。 BA120是低铬(4 wt%)高镍(23.5 wt%)合金,而SA120是高铬设计(10 wt%),两者均针对非磁性行为而设计; Thermo-Calc计算热力学软件与Ni-DATA 7热力学数据库已用于通过量化奥氏体钢的屈服应力对析出的γ'(γ素)Ni3(Ti,Al)相摩尔分数的依赖性来模拟合金的析出强化。通过在标准时效温度下沉淀出最佳直径(15 nm)的球状金属间化合物γ'相来实现所需的高强度。相对于基体中的Ni,相对于Ni而言,足够的Al和Ti可以确保足够的γ'相分数和析出物的数量密度,以提供必要的强度。通过显微硬度以及在室温下进行的静态和动态拉伸与剪切测试,已验证了BA120和SA120的预计伽玛沉淀增强至120-130 ksi。对老化试样的3-D LEAP分析显示了预期的gamma'尺寸和分布-对基体奥氏体和gamma'具有良好的热力学模型预测值组成准确度的析出物;已知亚稳态奥氏体钢具有由于机械诱导的马氏体相变而具有较高的均匀伸长率,在静态和动态载荷下的拉伸强度以及较高的断裂韧性。 FCC→BCC马氏体相变引起的相变可塑性(TRIP)现象已用于创建理论上的矩阵稳定性,流动稳定性和抗拉和剪切载荷下的抗碎片性的参数模型,然后将其用于均匀性的显着改善。两种应力状态的延展性。然后,通过来自静态和动态/绝热拉伸测试的实验数据以及来自较早的TRIP原型的特性MSsigma温度测量值对这些稳定性模型进行了校准,以支持新的合金设计。 BA120和SA120合金旨在在预定的临界温度(MSsigma)下进行应力辅助马氏体转变,从而优化转变塑性以实现所需的性能改进。;新的原型合金BA120表现出改善的机械性能和高强度在室温下静态和动态拉伸载荷下分别为124 ksi(845 MPa)和〜150 ksi(1040 MPa)。在室温下,准静态6拉伸载荷下BA120的均匀延展性为21%,具有高应变硬化性能,导致UTS为246 ksi(1696 MPa)。动态负载下的UTS为195 ksi(1344 MPa)。在广泛的温度范围(25°C-65°C)中,均匀的延展性是一致的(21%-24%)。机械测试表明所需的MSsigma温度,并且3-D LEAP微量分析证实了预测的基质组成以及强化沉淀物的粒径和分布。在BA120上进行FSI模拟实验以分析实际爆炸载荷下的材料行为,已显示出超过40%应变的有希望的结果。规定的简单热处理工艺包括在950°C固溶处理1小时,然后在750°C进行单步回火10小时,已经达到了强度和均匀延展性的理想性能目标。

著录项

  • 作者

    Sadhukhan, Padmanava.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 321 p.
  • 总页数 321
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号