首页> 外文学位 >New Methods of Spectral-Density Based Graph Construction and Their Application to Hyperspectral Image Analysis
【24h】

New Methods of Spectral-Density Based Graph Construction and Their Application to Hyperspectral Image Analysis

机译:基于谱密度图构建的新方法及其在高光谱图像分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

The past decade has seen the emergence of many hyperspectral image (HSI) analysis algorithms based on graph theory and derived manifold-coordinates. Yet, despite the growing number of algorithms, there has been limited study of the graphs constructed from spectral data themselves. Which graphs are appropriate for various HSI analyses---and why? This research aims to begin addressing these questions as the performance of graph-based techniques is inextricably tied to the graphical model constructed from the spectral data. We begin with a literature review providing a survey of spectral graph construction techniques currently used by the hyperspectral community, starting with simple constructs demonstrating basic concepts and then incrementally adding components to derive more complex approaches. Throughout this development, we discuss algorithm advantages and disadvantages for different types of hyperspectral analysis. A focus is provided on techniques influenced by spectral density through which the concept of community structure arises. Through the use of simulated and real HSI data, we demonstrate density-based edge allocation produces more uniform nearest neighbor lists than non-density based techniques through increasing the number of intracluster edges, facilitating higher k-nearest neighbor (k-NN) classification performance. Imposing the common mutuality constraint to symmetrify adjacency matrices is demonstrated to be beneficial in most circumstances, especially in rural (less cluttered) scenes. Many complex adaptive edge-reweighting techniques are shown to slightly degrade nearest-neighbor list characteristics. Analysis suggests this condition is possibly attributable to the validity of characterizing spectral density by a single variable representing data scale for each pixel. Additionally, it is shown that imposing mutuality hurts the performance of adaptive edge-allocation techniques or any technique that aims to assign a low number of edges (<10) to any pixel. A simple k bias addresses this problem.;Many of the adaptive edge-reweighting techniques are based on the concept of codensity, so we explore codensity properties as they relate to density-based edge reweighting. We find that codensity may not be the best estimator of local scale due to variations in cluster density, so we introduce and compare two inherently density-weighted graph construction techniques from the data mining literature: shared nearest neighbors (SNN) and mutual proximity (MP). MP and SNN are not reliant upon a codensity measure, hence are not susceptible to its shortcomings. Neither has been used for hyperspectral analyses, so this presents the first study of these techniques on HSI data. We demonstrate MP and SNN can offer better performance, but in general none of the reweighting techniques improve the quality of these spectral graphs in our neighborhood structure tests. As such, these complex adaptive edge-reweighting techniques may need to be modified to increase their effectiveness.;During this investigation, we probe deeper into properties of high-dimensional data and introduce the concept of concentration of measure (CoM)---the degradation in the efficacy of many common distance measures with increasing dimensionality---as it relates to spectral graph construction. CoM exists in pairwise distances between HSI pixels, but not to the degree experienced in random data of the same extrinsic dimension; a characteristic we demonstrate is due to the rich correlation and cluster structure present in HSI data. CoM can lead to hubness---a condition wherein some nodes have short distances (high similarities) to an exceptionally large number of nodes. We study hub presence in 49 HSI datasets of varying resolutions, altitudes, and spectral bands to demonstrate hubness effects are negligible in a k-NN classification example (generalized counting scenarios), but we note its impact on methods that use edge weights to derive manifold coordinates or splitting clusters based on spectral graph theory requires more investigation.;Many of these new graph-related quantities can be exploited to demonstrate new techniques for HSI classification and anomaly detection. We present an initial exploration into this relatively new and exciting field based on an enhanced Schroedinger Eigenmap classification example and compare results to the current state-of-the-art approach. We produce equivalent results, but demonstrate different types of misclassifications, opening the door to combine the best of both approaches to achieve truly superior performance. A separate less mature hubness-assisted anomaly detector (HAAD) is also presented.
机译:在过去的十年中,出现了许多基于图论和派生流形坐标的高光谱图像(HSI)分析算法。然而,尽管算法的数量不断增加,但是对根据光谱数据本身构建的图形的研究仍然有限。哪些图形适合各种HSI分析-为什么?这项研究旨在开始解决这些问题,因为基于图的技术的性能与从光谱数据构建的图形模型密不可分。我们从文献综述开始,对高光谱社区当前使用的频谱图构建技术进行了调查,首先是展示基本概念的简单构造,然后是逐步添加组件以得出更复杂的方法。在整个开发过程中,我们讨论了不同类型的高光谱分析的算法优缺点。重点介绍了受频谱密度影响的技术,通过这些技术出现了群落结构的概念。通过使用模拟的和实际的HSI数据,我们证明了基于密度的边缘分配比非基于密度的技术通过增加集群内边缘的数量产生了更统一的最近邻居列表,从而促进了更高的k最近邻居(k-NN)分类性能。在大多数情况下,尤其是在农村(不太混乱)的场景中,将对称性约束施加到对称邻接矩阵上被证明是有益的。已显示许多复杂的自适应边缘重加权技术会稍微降低最近邻居列表的特征。分析表明,这种情况可能归因于通过代表每个像素的数据比例的单个变量来表征光谱密度的有效性。另外,显示出强加互惠性会损害自适应边缘分配技术或旨在向任何像素分配较少数量的边缘(<10)的任何技术的性能。一个简单的k偏斜解决了这个问题。许多自适应边缘重加权技术都基于可编码性的概念,因此我们探索可编码性属性,因为它们与基于密度的边缘重加权有关。我们发现,由于簇密度的变化,共编码可能不是局部尺度的最佳估计,因此我们从数据挖掘文献中引入并比较了两种固有的密度加权图构造技术:共享最近邻(SNN)和相互接近(MP )。 MP和SNN不依赖于可编码性度量,因此不易受其缺点的影响。两者均未用于高光谱分析,因此这是对HSI数据进行这些技术的首次研究。我们证明了MP和SNN可以提供更好的性能,但总体而言,在我们的邻域结构测试中,没有一种加权技术可以改善这些频谱图的质量。因此,可能需要修改这些复杂的自适应边缘重加权技术以提高其有效性。;在此调查中,我们对高维数据的属性进行了更深入的探讨,并引入了度量集中(CoM)的概念-随着尺寸的增加,许多常用距离测量的功效会下降-与光谱图的构造有关。 CoM存在于HSI像素之间的成对距离中,但不具有相同外部尺寸的随机数据所经历的程度;我们展示的一个特征是由于HSI数据中存在丰富的相关性和聚类结构。 CoM可能导致中心性-一种情况,其中某些节点与异常大量的节点之间的距离较短(高度相似)。我们在49个具有不同分辨率,高度和光谱带的HSI数据集中研究了枢纽的存在,以证明枢纽效应在k-NN分类示例(广义计数方案)中可忽略不计,但我们注意到其对使用边缘权重得出流形的方法的影响基于光谱图理论的坐标簇或分裂簇需要更多的研究。这些新的与图相关的量中的许多都可以用来证明HSI分类和异常检测的新技术。我们基于增强的Schroedinger Eigenmap分类示例对这个相对较新和令人兴奋的领域进行了初步探索,并将结果与​​当前的最新方法进行了比较。我们产生相同的结果,但是展示了不同类型的错误分类,为结合这两种方法中的最佳方法打开了大门,以实现真正的卓越性能。还提出了一个单独的不太成熟的中心度辅助异常检测器(HAAD)。

著录项

  • 作者

    Stevens, Jeffrey.;

  • 作者单位

    George Mason University.;

  • 授予单位 George Mason University.;
  • 学科 Remote sensing.;Computer science.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号