首页> 外文学位 >A high frequency array-based photoacoustic microscopy imaging system.
【24h】

A high frequency array-based photoacoustic microscopy imaging system.

机译:基于高频阵列的光声显微成像系统。

获取原文
获取原文并翻译 | 示例

摘要

Photoacoustic microscopy is an imaging technique which draws from the specific strengths of two imaging modalities by capturing the contrast of optical imaging, while retaining the high resolution of ultrasonic imaging. It provides great promise for studying the structure and dynamics of tissue micro-vasculature in development and pathogenesis. Previous work in photoacoustic imaging has been mostly limited to single element transducers. This thesis presents results of a novel photoacoustic microscopy system using a 30MHz linear array and a custom receive electronics. There are two versions of the system, PAM I and PAM II. Both systems are comprised of three main components, a short pulsed laser, a high frequency transducer, and a custom multi-channel electronics system. The attraction towards high frequency arrays over single element transducers is natural; they offer the same resolution advantage of higher frequencies, while diminishing the need for mechanical scanning through steering of the beam, delivering aperture flexibility, tighter focusing capabilities through beamformation, and the capability to image in real-time.; The PAM I system includes an Nd:YAG pumped tunable dye laser, delivering a 6.5ns pulse duration, and a 10Hz pulse repetition rate to the sample via an optical fiber. Furnishing an incident energy of approximately 6mJ/cm 2 at 584nm, the laser induced acoustic waves via thermoelastic expansion. Using a 30MHz linear array and a custom multi-channel receive system, both phantom and in situ photoacoustic images were obtained. The receiving transducer array is a piezo-composite 48 element linear array, with an 8mm focal depth, and a -6dB fractional bandwidth of 50%. Multi-channel receive electronics were developed to include multiplexing and signal processing stages. Four-to-one multiplexers are used to select between elements. The signals are passed through filtering stages, followed by variable and fixed gain stages. The system receiver gain varies from 33dB-73dB, with a -3dB system response between 8MHz and 55MHz. The channels are further multiplexed to acquire data from a 4 channel oscilloscope. Using offline delay and sum beamforming, initial results provided phantom images from an 80mum hair in water, and a 6mum carbon fiber in an optically scattering medium similar to biological tissue. Photoacoustic images in situ clearly showed subcutaneous vessels less than 100mum in diameter imaged at depths of 3mm below the skin surface in a Sprague Dawley rat.; The PAM II system is a 16 channel fully automated parallel multi-channel system that acquires data from all elements on the receive board at once. Controlled by the user interface and the PC, the PAM II system uses the receiver front end analog board and is complemented by custom digital electronics. The digital portion of the system is a backplane motherboard/channel board scheme. Individual channel boards simultaneously digitize the echoes from the receiver at a 100MHz sampling rate. Digital data are then stored in temporary memory and transferred via the PCI bus to the PC with an NI-6534 (National Instruments, Houston, TX) acquisition board. A Labview program was developed to handle system triggering, and control signals to the digital board and receiver multiplexers. PAM II uses an Isonnolab Edgewave laser pumping 6ns pulses at 598nm using an electro-optic Q-switch, delivering an incident energy of below 15mJ/cm2. Phantom images in water and Intralipid solution were formed to characterize the system. Photoacoustic images of micro-vessels in a human hand and 3D images of vasculature in two Sprague Dawley rats were obtained in vivo. The axial and lateral spatial resolutions for both systems were found to be 45+/-5mum and 100+/-5mum, respectively. Ongoing research is also presented for development of a real time PAM system. Initial experiments provided in vivo rat images differentiating micro-vessels in systole and diastole.
机译:光声显微镜技术是一种成像技术,它通过捕获光学成像的对比度,同时保留了超声成像的高分辨率,从两种成像模式的特定强度中汲取了力量。它为研究组织微脉管的发育和发病机理提供了广阔的前景。光声成像的先前工作主要限于单元件换能器。本文提出了使用30MHz线性阵列和定制接收电子设备的新型光声显微镜系统的结果。该系统有两个版本,PAM I和PAM II。这两个系统均由三个主要组件组成:短脉冲激光,高频换能器和定制的多通道电子系统。对单元件换能器的高频阵列的吸引力是自然的;它们在高频方面具有相同的分辨率优势,同时减少了通过光束控制而进行机械扫描的需求,提供了孔径灵活性,通过波束形成实现了更严格的聚焦能力以及实时成像的能力。 PAM I系统包括一个Nd:YAG抽运的可调染料激光器,可通过光纤向样品提供6.5ns的脉冲持续时间和10Hz的脉冲重复频率。激光在584nm处提供约6mJ / cm 2的入射能量,通过热弹性膨胀感应出声波。使用30MHz线性阵列和定制的多通道接收系统,可以获得幻像和原位光声图像。接收换能器阵列是压电复合48元件线性阵列,焦深为8mm,-6dB的分数带宽为50%。开发了多通道接收电子设备,以包括多路复用和信号处理阶段。四对一多路复用器用于在元件之间进行选择。信号经过滤波级,然后经过可变和固定增益级。系统接收器增益在33dB-73dB之间变化,-3dB系统响应在8MHz至55MHz之间。这些通道进一步多路复用以从4通道示波器获取数据。使用离线延迟和求和波束成形,初步结果提供了来自水中80mum头发和类似于生物组织的光散射介质中6mum碳纤维的幻像图像。在Sprague Dawley大鼠中,在皮肤表面以下3mm的深度处成像的原位光声图像清楚地显示出直径小于100mm的皮下血管。 PAM II系统是16通道全自动并行多通道系统,可立即从接收板上的所有元件中获取数据。 PAM II系统由用户界面和PC控制,使用接收器前端模拟板,并辅以定制的数字电子设备。系统的数字部分是背板主板/通道板方案。各个通道板同时以100MHz的采样率将来自接收器的回波数字化。然后,数字数据存储在临时存储器中,并通过PCI总线与NI-6534(美国德克萨斯州休斯顿的国家仪器)采集板一起传输至PC。开发了一个Labview程序来处理系统触发以及控制到数字板和接收器多路复用器的信号。 PAM II使用Isonnolab Edgewave激光器,通过电光Q开关在598nm处泵浦6ns脉冲,从而提供低于15mJ / cm2的入射能量。在水中和脂质内溶液中形成幻影图像以表征系统。在体内获得了人类手中的微血管的光声图像和两只Sprague Dawley大鼠的脉管系统的3D图像。两种系统的轴向和横向空间分辨率分别为45 +/- 5mum和100 +/- 5mum。还提出了用于实时PAM系统开发的正在进行的研究。最初的实验提供了体内大鼠图像,用于区分收缩期和舒张期的微血管。

著录项

  • 作者

    Bitton, Rachel Rinat.;

  • 作者单位

    University of Southern California.$bBiomedical Engineering.;

  • 授予单位 University of Southern California.$bBiomedical Engineering.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号