首页> 外文学位 >Polyelectrolytes based biomimetic interfaces for bioelectronic applications.
【24h】

Polyelectrolytes based biomimetic interfaces for bioelectronic applications.

机译:用于生物电子应用的基于聚电解质的仿生界面。

获取原文
获取原文并翻译 | 示例

摘要

Biomimetic interfaces consisting of polyelectrolyte multilayers, lipid bilayers, proteins and other nanostructured components have been fabricated and characterized in this study. While each chapter addresses a unique architecture or issue, the underlying theme of the study is the development of nanostructured biomimetic architectures that express protein activities and can be used to produce high-value devices and processes. Neuropathy target esterase (NTE) is a membrane protein found in human neurons. Binding of certain organophosphorus (OP) compounds to NTE is believed to cause OP-induced delayed neuropathy (OPIDN), a type of paralysis for which there is no effective treatment. Mutations in NTE have also been linked with serious neurological diseases, such as Lou Gehrig's disease. In the first part of this dissertation, a nanostructured biosensor to rapidly and sensitively measure the esterase activity of a fragment of NTE known as NEST is presented. The biosensor was fabricated by co-immobilizing two enzymes tyrosinase and NEST. The biosensor gives dose-dependent decrease in sensor output in response to known NEST (or NTE) inhibitors. The second part of this dissertation presents a theoretical model for bi-enzyme electrode biosensors that use substrate recycling to increase sensitivity. The model was validated using a rotating disk electrode on which tyrosinase and NEST were co-immobilized. The model's predictions were then used to quantify the effects of mass transport, partition coefficients, and enzyme kinetics on the biosensor's metrological properties. This approach can be used to optimize the performance of bi-enzyme electrodes that involve substrate recycling. The third part of this study presents novel methods to produce arrays of bilayer lipid membranes (BLMs) on patterned polyelectrolyte multilayers. Liposomes composed of 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1, 2-dioleoyl-sn-glycero-3-phosphate (DOPA) were found to adsorb preferentially on poly (dimethyldiallylammonium chloride) (PDAC) and poly(allylamine hydrochloride) (PAH) surfaces, and in much smaller amounts onto sulfonated poly(styrene) (SPS) surfaces. Poly(ethylene glycol) (m-dPEG acid) coated surfaces were found to resist liposome adsorption. These results allowed the fabrication of BLM microarrays by exposing substrates patterned with PDAC, PAH and m-dPEG to DOPA/DOPC vesicles. The fourth part of this study presents a novel biomimetic interface consisting of an electrolessly deposited gold film overlaid with a tethered BLM (tBLM). Two model membrane biomolecules, the ionophore valinomycin and NEST, were incorporated into the tBLM, and the activity of the resulting biomimetic interfaces was measured. Microcontact printing (muCP) of electrolessly deposited gold patterns on glass slides was also used to generate arrays of tBLMs. Such arrays may be useful for high-throughput screening of drugs and chemicals that interact with cell membranes. The fifth part of this study presents an approach to fabricate high-quality, 3D patterned bionanocomposite layered films on substrates whose surface properties are incompatible with existing self-assembly methods. The last part of this study presents an approach that can be used to create stable, nanostructured, amphiphilic and cross-linkable PAMAMOS-DMOMS dendrimer patterns.
机译:仿生界面由聚电解质多层,脂质双层,蛋白质和其他纳米结构组件组成,并在这项研究中进行了表征。尽管每一章都讨论了独特的体系结构或问题,但本研究的基本主题是开发表达蛋白质活性并可以用于生产高价值设备和过程的纳米仿生体系结构。神经病靶标酯酶(NTE)是一种在人类神经元中发现的膜蛋白。某些有机磷(OP)化合物与NTE的结合被认为会引起OP诱发的迟发性神经病(OPIDN),这是一种无法有效治疗的瘫痪类型。 NTE的突变也与严重的神经系统疾病有关,例如Lou Gehrig病。在本文的第一部分,提出了一种纳米结构的生物传感器,用于快速灵敏地测量NTE片段的酯酶活性,即NEST。通过共同固定两种酶酪氨酸酶和NEST来制造生物传感器。生物传感器响应已知的NEST(或NTE)抑制剂,使传感器输出剂量依赖性降低。本文的第二部分提出了一种双酶电极生物传感器的理论模型,该酶利用底物回收来提高灵敏度。使用旋转盘电极验证模型,酪氨酸酶和NEST共同固定在该电极上。然后将模型的预测结果用于量化质量传递,分配系数和酶动力学对生物传感器的计量特性的影响。该方法可用于优化涉及底物回收的双酶电极的性能。这项研究的第三部分介绍了在图案化的聚电解质多层膜上生产双层脂质膜(BLM)阵列的新方法。发现由1,2-二油酰基-sn-甘油-3-磷酸胆碱(DOPC)和1,2-二油酰基-sn-甘油-3-磷酸胆碱(DOPA)组成的脂质体优先吸附在聚二甲基二烯丙基氯化铵(PDAC)上和聚(烯丙胺盐酸盐)(PAH)表面,并以更少的量附着在磺化聚(苯乙烯)(SPS)表面上。发现聚(乙二醇)(间-dPEG酸)包被的表面可以抵抗脂质体的吸附。这些结果允许通过将用PDAC,PAH和m-dPEG图案化的底物暴露于DOPA / DOPC囊泡来制造BLM微阵列。这项研究的第四部分介绍了一种新型的仿生界面,该界面由化学沉积的金膜和系留的BLM(tBLM)覆盖而成。将两种模型膜生物分子,离子载体缬氨霉素和NEST,掺入tBLM中,并测量所得仿生界面的活性。化学沉积在载玻片上的金图案的微接触印刷(muCP)也用于生成tBLM阵列。这样的阵列可用于高通量筛选与细胞膜相互作用的药物和化学物质。这项研究的第五部分介绍了一种在表面性能与现有自组装方法不兼容的基板上制造高质量,3D图案化的仿生纳米复合层状薄膜的方法。本研究的最后一部分提出了一种可用于创建稳定的,纳米结构的,两亲的和可交联的PAMAMOS-DMOMS树状聚合物图案的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号