首页> 外文学位 >Hydrolysis, esterification and glycerolysis of lipids in supercritical carbon dioxide media.
【24h】

Hydrolysis, esterification and glycerolysis of lipids in supercritical carbon dioxide media.

机译:超临界二氧化碳介质中脂质的水解,酯化和甘油水解。

获取原文
获取原文并翻译 | 示例

摘要

Hydrolysis, esterification and glycerolysis reactions were conducted in supercritical carbon dioxide (SC-CO2) media with the overall objective of enhancing fundamental knowledge about enzymatic and non-enzymatic lipid reactions conducted in SC-CO2 media while providing key processing parameters and kinetic models for process design.;Reactions were conducted in a stirred batch reactor (for glycerolysis, esterification and hydrolysis) and in a continuous packed-bed enzymatic reactor (for hydrolysis). Samples were collected as a function of time and the concentrations of monoacylglycerol (MAG), diacylglycerol (DAG), free fatty acids (FFA) and triacylglycerol were determined using thin layer chromatography - flame ionization detector or supercritical fluid chromatography system. Tested processing parameters for batch reactions were: pressure (10-30 MPa), temperature (170-250°C), supercritical media (CO2 or N2) and initial reactant concentrations (glycerol/oil/water, glycerol/oleic acid, oil/water). For enzymatic reactions, SCCO2 flow rate, enzyme load and temperature were the investigated parameters.;Pressure had no impact on the maximum rate of MAG formation (MAG max) obtained during esterification but decreased MAGmax during glycerolysis and delayed FFA production during non-enzymatic hydrolysis. High temperatures increased MAGmax during esterification while supercritical media did not have any effect on MAGmax during glycerolysis and esterification or on the maximum rate of FFA formation (FFAmax) during hydrolysis. An increase in initial water concentration increased MAG max during glycerolysis and FFAmax during hydrolysis while an increase in initial glycerol content increased MAGmax during esterification.;For enzymatic hydrolysis, conversion rate was improved with enzyme load and SC-CO2 flow rate but unaffected by temperature. More studies are therefore required to determine the true optimum for enzyme load and flow rate.;Extensive kinetic modeling taking into account all possible reaction steps for the batch reactions was performed and rate constants were established. Research findings lead to a better understanding of the complex mechanism involved in each reaction while providing the necessary data for optimal process design targeting the production of MAG, DAG or FFA. This research contributes to the development of novel environmentally friendly approaches to value-added processing of oilseeds such as canola, an important local agricultural commodity.
机译:在超临界二氧化碳(SC-CO2)介质中进行水解,酯化和甘油水解反应,其总体目标是增强有关在SC-CO2介质中进行酶促和非酶促脂质反应的基础知识,同时提供关键的工艺参数和动力学模型在搅拌间歇式反应器(用于甘油分解,酯化和水解)和连续填充床酶促反应器(用于水解)中进行反应。收集样品作为时间的函数,并使用薄层色谱-火焰离子化检测器或超临界流体色谱系统测定单酰基甘油(MAG),二酰基甘油(DAG),游离脂肪酸(FFA)和三酰基甘油的浓度。批处理反应的测试工艺参数为:压力(10-30 MPa),温度(170-250°C),超临界介质(CO2或N2)和初始反应物浓度(甘油/油/水,甘油/油酸,油/水)。对于酶促反应,SCCO2流量,酶负荷和温度是研究的参数。压力对酯化过程中获得的最大MAG形成速率(MAG max)没有影响,但在甘油分解过程中MAGmax降低,在非酶促水解过程中FFA产生延迟。高温会增加酯化过程中的MAGmax,而超临界介质则不会对甘油分解和酯化过程中的MAGmax或水解过程中的FFA形成最大速率(FFAmax)产生任何影响。初始水浓度的增加在甘油分解过程中增加了MAGmax,在水解过程中增加了FFAmax,而初始甘油含量的增加则在酯化过程中增加了MAGmax。因此,需要更多的研究来确定酶负载和流速的真正最佳值。进行了广泛的动力学建模,其中考虑了分批反应的所有可能的反应步骤,并建立了速率常数。研究结果使人们对每个反应涉及的复杂机制有了更好的了解,同时为针对MAG,DAG或FFA生产的最佳工艺设计提供了必要的数据。这项研究有助于开发新型的环境友好方法,以对油籽(例如油菜)(一种重要的当地农产品)进行增值加工。

著录项

  • 作者

    Moquin, Paul Henri Luc.;

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Engineering Agricultural.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 216 p.
  • 总页数 216
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 农业工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号