首页> 中文学位 >基于欧洲规范和中国规范的预应力混凝土箱梁确定性对比分析
【6h】

基于欧洲规范和中国规范的预应力混凝土箱梁确定性对比分析

代理获取

目录

ACKNOWLEDGEMENTS

摘要

ABSTRACT

Contents

LIST OF FIGURES

LIST OF TABLES

1 INTRODUCTION

1.1 Background

1.2 Problem Statement

1.3 Objectives

1.4 Research Study Area and Descriptions

2 LITERATURE REVIEW

2.1 Cracking of the Concrete

2.2 Control of Cracking

2.3 Creep,Shrinkage,Fatigue and Corrosion Models

2.4 Properties of the Prestressing Strands

2.5 Tensioning Schemes

2.6 Stability-critical Cantilever Benchmarks

2.7 Challenges Encountered by the Bridges in Reinforced Concrete

2.8 Deflection Control

2.9 Loading of the Prestressed Concrete Bridges

2.9.1 Dead Load

2.9.2 Dynamic Load

2.9.3 The Fatigue Prestress Load

2.9.4 Post Tensioning Moment

2.9.5 Unfactored Bending Moments due to Dead Load and Live Load

2.10 European Traffic Load Model

2.11 Post Tensioned Concrete Bridge

2.12 Prestressed Concrete Bridge Deterioration

2.14 Composite Bridges for Freeways by Euro Code

3 DESIGN BY CHINESE CODE

3.1 Design Content

3.1.1.Structure Calculation Status

3.2.3 Structure Modeling

3.3 Material Parameters

3.3.1 Concrete

3.3.2 A Steel Bar(steel)

3.3.3 Prestressed Reinforcement

3.4 Load Calculation

3.4.1 Structural Dead Load

3.4.2 Prestress Load

3.4.3 Shrinkage and Creep of Concrete

3.4.4 Vehicle Load

3.4.5 Braking Force

3.4.6 Temperature Load

3.5 Load Combination

3.6 Serviceability Limit State(SLS)

3.7 Sectional Analysis Results

3.8 Calculation of Number of Prestressing Steel

3.9 Checking Stress Calculation

4.DESIGN BY EURO CODE AND STANDARDS

4.1 Design Content

4.1 Calculation of the Structural Limit State

4.2 Calculations

4.2.1 Prestress Intensity

4.2.2 Software

4.3.Parameter of Materials

4.3.1 Concrete Properties

4.3.2 Steels

4.3.3 Prestressed Steel

4.3.4 Prestressing Pipe and Anchor

4.4 Load Calculation

4.4.1 Permanent Structural Load

4.4.2 Prestressed Load

4.4.4 Vehicle Load

4.4.5 Braking

4.4.6 Thermal Load

4.5 Load combination

4.5.1 Ultimate limit state(ULS)

4.5.2 Service limit state(SLS)

4.5.3 Exploitation Load Limit State Coefficient

4.6 Sectional Analysis Results

4.7 Calculation of Number of Prestressing Steel

4.8 Checking Stress Calculation

5 COMPARISON BETWEEN EURO AND CHINESE CODES

5.1 Comparison Parameter of Chinese and Euro Codes

5.2 Comparison of Bending Moments Between Chinese and Euro Codes

5.3 Comparison number of prestressing by Chinese and Euro Codes

5.4 Comparison of Compression Stress of Beams between Chinese and Euro Codes

6 CONCLUSIONS

References

声明

展开▼

摘要

随着城市交通量,高速公路交通量的逐渐增大和经济快速增长,预应力混凝土桥梁已成为当今城市立交公路系统的可靠和可持续解决方案。在非洲,一些发展中国家,如卢旺达,布隆迪,加蓬,贝宁和刚果包括刚果布在设计时缺乏统一的规范。因此,本文考虑跨度为38.15米的典型后张混凝土梁,比较了中国规范和欧洲规范设计的预应力混凝土桥梁的预应力要求。确定性分析表明,中国规范和欧洲规范均由预应力混凝土桥梁正常使用极限状态控制设计。
  1.通过中国规范得到的弯矩比欧洲规范略高11%。
  2.中国规范算得需要5束8T15和4束7T15预应力钢绞线,欧洲规范算得需要4束8T15和4束7T15预应力钢绞线,中国规范算得所需钢绞线面积比欧洲规范算得钢绞线面积大11.8%。
  3.对于38.15米跨度的梁,由欧洲规范计算得到的边梁和主梁横截面的项板压应力分别比中国规范大49%和47%。
  4.对于38.15米跨度的梁,由中国规范计算得到的边梁和主梁1横截面项板压应力分别比欧洲规范大26%和15%;但是,主梁2横截面底板压应力仅比欧洲规范大4%。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号