首页> 中文学位 >土壤添加大蒜秸秆和AMF菌及填闲越冬叶菜对塑料大棚连作黄瓜生理生态的影响
【6h】

土壤添加大蒜秸秆和AMF菌及填闲越冬叶菜对塑料大棚连作黄瓜生理生态的影响

代理获取

目录

声明

Chapter 1 Introduction and Review of Literature

1.1 Protected cultivation of horticultural crops in China:a brief scenario

1.2 Sustainable intensification of greenhouse crops:a key challenge in China

1.3 Continuous cropping obstacles:a negative plant-soil feedbacks

1.4Phenomenon of allelopathy in agriculture

1.4.1 Allelopathic interference:insight into cropping system

1.4.2 Allelopathic regulation:insight into cropping system

1.4.3 Allelopathic of garlic application:a dynamic approach in crop production

1.5 Implication of sustainable agriculture practices and organic inputs in cross talk

1.6Crop residue as soil amendment:a sustainable biological input

1.6.1Effect on soil quality environment

1.6.2Effect on plant growth and productivity

1.7AMF Mycorrhiza:a compatible symbiosis for plant-microbe interaction

1.7.1AM-mutualistic associationfor soil productivity

1.7.2AM-mutualistic associationfor plant growth and cropproductivity

1.8Diversified cropping system:a key ecological tool for positive plant-soil feedback

1.9A metagenomic insight into the high-throughput sequencing of soil microbiome analysis

1.10Research project objectives and scope of study

Chapter 2 Response of Cucumber Growth, Soil Quality and Microbial Community Composition to Soil Amendment with Garlic Stalk

2.1 Materials and methods

2.1.1 Site description and crop residue used

2.1.2 Experimental design and set-up

2.2 Measurements and data analysis

2.2.1 Soil sampling and analyses of chemical characteristics

2.2.2 Soil enzyme assays

2.2.3 Plant morphological and physiological measurements

2.2.4 DNA extraction and PCR amplification of 16S rRNA and 18S rRNA

2.2.5 Sequence processing and analysis

2.2.6 Statistical analysis

2.3 Results

2.3.1Effect on soil biochemical characteristics

2.3.2 Effect on soil bacterial and fungal community composition

2.3.3 Effect on soil bacterial and fungal alpha diversity

2.3.4 Relationship between soil properties and the top phyla (bacteria, fungi)

2.3.5 Effect on chlorophyll and leaf gas exchange parameters of cucumber

2.3.6 Effect on plant growth and yield of cucumber

2.4 Discussion

2.4.1Effect on the soil chemical and biochemical properties

2.4.2Effect on soil microbial community and diversity

2.4.3Short-term effects on the growth and productivity of cucumber

2.5Brief summary

Chapter 3 Response of Soil Quality, Microbial Community Composition, Cucumber Growth and Fruit Quality to Soil Amendment with Garlic Stalk and AMF under Continuous Cucumber Planted Soil

3.1Materials and methods

3.1.1 Site description, soil and organic amendments

3.1.2 Source of inoculum and maize-trap culture of AMF propagation

3.1.3 Experimental set-up, plant materials and treatments applications

3.1.4 Soil and plant sampling

3.1.5 Assessment of AMF indices

3.1.6 Plant growth observations

3.1.7 Fruit nutrient analysis and quality evaluation

3.1.8 Determination of soil properties

3.1.9 Molecular profiling of soilbacterial communities using Illumina HiSeq analysis

3.1.10 Molecular profiling of AMF communities using Illumina MiSeq analysis

3.1.11 Statistical analysis

3.2 Results

3.2.1 Effect on soil physicochemical and biological characteristics

3.2.2 Effect on soil bacterial community composition

3.2.3 Spatial variability in bacterial communities within the soil samples

3.2.4 Bacterial alpha diversity and species richness

3.2.5 Implication of soil edaphic variables on bacterial communities

3.2.6 Illumina MiSeq analysis for the identification of the AM community

3.2.7 Effect on AMF community composition

3.2.8 AMF community richness and diversity

3.2.9 Relationship between AMF community structure and cucumber productivity

3.2.10 Effect of organic amendments on fruit quality development

3.2.11 Effect of AMF development on cucumber fruit productivity

3.2.12 Effect on AMF development and root activity

3.2.13 Effect on the cucumber yield and fruit nutrient uptake

3.2.14 Effect on plant growth attributes

3.3 Discussion

3.3.1 Effect of AMF and GS on soil quality

3.3.2 Effect of AMF and GS on soil bacterial community composition

3.3.3 Soil edaphic factors affecting the bacterial community structure

3.3.4 Effect of organic amendments for the AM community composition

3.3.5 Effect on AMF structural development and fusarium incidence response

3.3.6 Effectiveness of RGS and AMF on plan growth attributes

3.4 Brief summary

Chapter 4 Response of Soil Microbial Community Structure and Cucumber Yield to Winter Catch Leafy Vegetable Crops

4.1 Materials and methods

4.1.1 Field description and experimental site

4.1.2 Experimental design, crop establishment and management

4.1.3 Soil sampling and analysis

4.1.4 DNA extraction, PCR amplification, and metagenomic sequencing

4.1.5 Sequence data analysis, bioinformatics

4.1.6 Predictive functional profiling of microbial communities using 16S rRNA gene

4.1.7 Statistical analysis

4.2 Results

4.2.1 Effect of winter catch leafy vegetable on soil properties

4.2.2 Taxonomic characterization of rhizosphere microbiota

4.2.3 Changes in bacterial community composition

4.2.4 Comparative assessment of microbial biomarkers

4.2.5 Soil bacterial diversity responses to different planting types

4.2.6 Linking bacterial community to soil properties

4.2.7 Predictive metagenomics profiling

4.2.8 Effect of cropping system on cucumber yield

4.3 Discussion

4.3.1 Changes in community composition and functional profiling of active microbiome

4.3.2 Effect of different cropping system on soil bacterial diversity

4.3.3 Effect of compositional shift on predictive metabolic functions

4.3.4 Effect of different cropping system on soil quality and cucumber yield

4.4Brief summary

Chapter 5 Conclusion, Innovation and Prospective

5.1 Main conclusion

5.1.1 Soil amendment with garlic stalk influenced the soil properties, cucumber growth and microbiome structure

5.1.2 The combined application of garlic stalk and AMF significantly affected the cucumber growth, physiology, fruit quality and AMF community structure

5.1.3 The identified garlic stalk-AMF synergistic interaction induced the soil quality and microbial community structure

5.1.4 The winter catch leafy vegetables altered the soil quality, microbial community structure, and cucumber yield

5.2 Innovative points of study

5.3 Future Perspectives

参考文献

APPENDIXES

CURRICULUM VITAE

致谢

展开▼

摘要

复种是黄瓜在中国北方大棚栽培较为典型的集约化生产模式。它被认为是对养分利用充分,因此需要集约化管理及投入更多的植物养分以提高作物的产量。长期的人工品投入和管理,使得连作模式成为设施栽培的主要种植体系。黄瓜是高经济价值但不耐连作的蔬菜作物,长期连作是造成其产量降低及土壤条件恶化的主要因素。采用可持续的、经济的农艺措施可减少由连作导致的土壤-植物负反馈。然而,土壤添加有机物和引入多样化种植体系对作物产量、土壤质量及土壤微生物种群结构的影响及潜在机制尚不清楚。本研究通过向土壤添加大蒜秸秆及菌根真菌,以及越冬种植填闲叶菜,分析消减黄瓜连作障碍和提高黄瓜产量的生物学及生态学机制。 1.添加大蒜秸秆对土壤理化特性,微生物群落结构及连作黄瓜的影响 集约种植体系中,通过有机物改良实现可持续农业,需要用低投入高产出的方法恢复土壤微生物多样性,在不增加投入成本的情况下最大限度地提高生产力。本研究通过短期的盆栽预试验检测了大蒜秸秆作为土壤添加剂的效应。试验土壤为黄瓜连作土壤(一年种植两茬黄瓜,连续种植7年),将大蒜秸秆与黄瓜连作7年的土壤(一年两季)按比例1%、3%、5%加入盆栽土壤,然后种植黄瓜。试验结果表明,添加最高数量的大蒜秸秆(5%)促进了黄瓜的形态学指标,如株高、叶面积、地上部分的干重和鲜重。与对照相比,向盆中添加秸秆可以显著提高叶片光合色素的形成。土壤的pH发生了适度的改变,同时,土壤有机质(SOM)含量、养分利用率和土壤酶活性提高,黄瓜增产20%。利用高通量测序对16S rRNA和18S rRNA基因测序分析表明,添加3%的大蒜秸秆处理对细菌的丰富度和系统发育多样性的提高较真菌高。另外,热图分析表明,土壤pH、有机质、有效磷、有效钾含量和蔗糖酶活性是影响细菌及真菌群落分布的重要因素。据我们所知,本试验是第一个就地取材、经济利用作物残体(大蒜秸秆)在短期内修复连作土壤提高黄瓜产量的研究。 2.添加大蒜秸秆和AMF对土壤AMF群落组成及连作黄瓜生长与果实品质的影响 通常在同一块土地上持续种植黄瓜会导致土壤容易发生土壤相关的连作障碍,例如土壤病害,土壤病原菌和自毒物质的积累。丛枝菌根真菌(AMF)是天然、有效的植物刺激素,具有广泛的生化、生理、生态作用的应用意义。然而,在设施生产系统中鲜见报道与作物残体配合使用对作物生长、微生物群落结构及黄瓜产量的作用。本试验于2016-2018年在设施栽培环境下,探究添加25g本土AM菌株(Glomusversiforme L)和5%的大蒜秸秆对作物产量的影响。我们发现,AM菌和大蒜秸秆的共同添加促进了黄瓜的生长和生理。添加大蒜秸秆和AM菌的共同作用表现为促进黄瓜根部的定殖、菌丝增殖和孢子的形成,提高黄瓜根系活力,抑制黄瓜枯萎病的发病率。添加AM菌后的协同作用,促进了黄瓜果实的营养吸收、提高了黄瓜产量及果实品质。IlluminaMiSeq测序结果表明,大蒜秸秆及AM菌的共同添加提高了Glomeromycotan的群落组成和多样性。AM菌的优势属Glomus类群的增加可能是作物产量和果实品质特征相关的重要生态驱动因素。此外,大蒜秸秆及AM菌的共同添加与相容宿主的相互作用为化感作用的研究提供了新的视角,挑战了之前模糊的假设:即特定的真菌菌株可能不能有效地作用于有代表性的有机化感物质。本试验结果表明,AM-大蒜秸秆的结合作为一种经济有效的生物资源,是提高塑料大棚黄瓜产量并提高其生态条件的一种实用的选择和可持续措施。 3.添加大蒜秸秆和AMF菌对土壤土壤质量和细菌多样性及连作黄瓜的影响 我们进一步研究向连作土壤中添加本土有机质土壤改良剂大蒜秸秆(GS)和菌根真菌AMF(Glomusversiforme L.)的激发效应。我们发现大蒜秸秆和AMF菌的共同添加可以通过增加土壤有机质,土壤养分含量和生物多样性诱导土壤质量变化,进而提高黄瓜产量。大蒜秸秆的添加促进AMF的发展,通过接种、孢子形成、菌丝生长,促进共生协调以获得与宿主相容的共生来提升菌根的作用。 16S rRNA宏基因组测序后的PCA和NMDS分析揭示了有机物质的添加对细菌群落结构和组成的影响。特别是细菌的多样性对单一的有机物质更敏感,在添加了大蒜秸秆的处理下,表现出最大丰度和多样性指数(Ace和Chao)。冗余分析表明,影响细菌优势菌群的处理分别是单一添加大蒜秸秆(GS)、单一添加AMF、GS和AMF共同添加。 土壤pH值与生物活化指标是种植系统中土壤细菌群落结构的重要预测指标。此外,我们与寄主植物共生相关的预测代谢特征分析(代谢)可能是缓解连作障碍的重要生态信号。本研究的结果表明大蒜秸秆-AM菌的共同使用是一种较好的措施。可以推测大蒜秸秆及AMF土壤接种的正协同作用,是诱导土壤质量环境的关键机制,最终提高了季节性作物产量并调节了连作土壤的微生物活性。 4.越冬填闲不同叶菜对土壤微生物群落和连作黄瓜产量的影响 农业管理措施和种植系统可以通过调整土壤生化修复,土壤微生物的活力和组成显著影响植物的生物多样性、土壤的健康和生产力。在本试验中,叶菜类蔬菜作为填闲作物在黄瓜两季生产的越冬填闲期种植去阐述叶菜作为填闲作物对植物-土壤-微生物的影响。土壤细菌群落高通量测序结果表明填闲模式通过改变土壤特性,改变了土壤细菌群落组成及多样性和土壤的生物学特性。冬春种植季中,黄瓜产量最高的是菠菜-黄瓜种植模式,然而,在秋-冬种植季,小白菜-黄瓜种植模式的黄瓜产量高于对照。PCA及NMDS分析表明,与黄瓜休耕相比,填闲模式可以更好的塑造微生物的组成。LEfSe的定量分析表明变形菌门、放线菌、拟杆菌门和酸杆菌门是潜在的具有功能性和活性的土壤微生物群体。与休耕相比,填闲模式的根际是功能基因代谢能力研究的热点。此外,与寄主植物共生相关菌群的预测代谢特征(代谢和解毒)可能是一个重要的生态信号,为其介导土壤结构稳定性提供直接证据。有趣的是,小白菜与菠菜的种植密度可以通过提高砷酸盐还原酶途径,减少砷富集带来的不利影响。RDA分析表明核心微生物组的相对丰度可以直接和间接地受某些环境决定因素的影响。上述研究结果强调了填闲栽培系统作为保护土壤生态环境的有效生物工具的重要性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号