首页> 中文学位 >岩溶隧道突水通道扩展机理、最小防突厚度及逃生路线优化研究
【6h】

岩溶隧道突水通道扩展机理、最小防突厚度及逃生路线优化研究

代理获取

摘要

Water(mud)inrush is one of the main geological disasters during the karst tunnel construction.The occurrence frequency and death toll caused by water(mud)inrush are both on the top levels in serious tunnel accidents at home and abroad.So in this thesis,the expansion mechanism of water inrush channel,minimum rock thickness between excavation opening and filling-type karst cave,and escape routes optimization after water inrush from the karst tunnel are systematically investigated by theoretical analysis,numerical simulation and engineering projects.Moreover,as for the Qiyueshan karst tunnel,solute transport characteristics and groundwater connection structures of karst water tracing,risk evaluation of water and mud inrush are further researched by field tests,numerical simulation,theoretical analysis and engineering application. (1)Considering the effects of water erosion,seepage force and soil cohesion,three-dimensional force analysis for the soil particle on the side wall of water inrush channel is conducted.The critical condition for incipient particle motion is established.The incipient flow velocity for sliding instability and rolling instability of the particle is deduced respectively.The criterion of incipient particle motion is proposed.The expansion mechanism of water inrush channel is revealed.The influencing factors of the incipient flow velocity are analyzed and the rules of particle loss are discussed.Finally,through the analysis of particle-fluid coupling and calculation of DEM-CFD coupling,numerical simulation for the incipient particle motion and channel expansion is implemented,and the proposed mechanism of incipient particle motion is verified. (2)Four typical karst cave locations(i.e.,at the top,bottom,lateral and front of the tunnel),two types of filled karst caves,with water and with water-mud mixture,are studied,to estimate the required thickness of supporting rock stratum in order to prevent water and mud inrush under earthquake conditions.Generalized models and computational techniques are developed for such conditions.The models consider the shear,bending and punching failures of the supporting rock stratum against the pressure from filling materials in the karst caves.Combined with quasi-static and dynamic theories,computational models are developed to estimate the minimum safety thickness of the rock stratum between the excavation opening and the filling-type karst cave.The factors governing the minimum safety thickness of the supporting rock stratum to resist water and mud inrush from the karst caves are analyzed.Finally,the theoretical models and computational methods are verified with case studies. (3)Numerical simulation of the gas-liquid two-phase flow is carried out by using the FLUENT software to probe water flow characteristics after water inrush. (4)The solute transport characteristics and groundwater connection structures of karst water tracing are studied by numerical simulation and field tracer tests.The simulation method of solute transport is first proposed.Then five kinds of representative geological models of karst water tracing are built,and the process of solute transport is simulated in the FLUENT software.The variation characteristics of solute transport under the conditions of straight pipeline,bend,depression,waterfall and branch pipeline are analyzed based on the simulation results. (5)In order to effectively control the water and mud inrush risk and guarantee the safety of tunnel construction,an unascertained measure model of water and mud inrush risk evaluation is established based on the unascertained measure theory.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号