首页> 中文学位 >开轮式类F1赛车气动特性的数值分析及实验研究
【6h】

开轮式类F1赛车气动特性的数值分析及实验研究

代理获取

目录

声明

ABSTRACT

摘要

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1 INTRODUCTION

1.1 Background

1.2 The Open-wheel Race Car Aerodynamic Development

1.2 The Open-wheel Race Car Aerodynamic Development

1.3 Methods study of open-wheel race car

1.3.1 Experimental method

1.3.2 Numerical method

1.4 The main technical of open-wheel race car aerodynamics

1.5 Objectives of This Investigation

1.6 Thesis Structure

Chapter 2 THEORETICLE FOUNDATION OF OPENWHEEL RACE CAR AERODYNAMICS

2.1 Aerodynamics characteristic of open-wheel race car

2.2 Aerodynamic Coefficients

2.2.1 Drag Coefficient

2.2.2 Lift Coefficient

2.2.3 Side Coefficient

2.2.4 Pressure Coefficient

2.3 Wings effect

2.3.1 Front wing

2.3.2 Rear wing

2.4 Wheel effect

2.5 Ground Effect

2.6 Summary

Chapter 3 MODEL CREATION AND RESEARCH METHODOLOGY

3.1 Description of CAD Model Geometries

3.2 Numerical Methods and Turbulence Modeling

3.2.1 RANS turbulence model

3.2.2 Large Eddy Simulation(LES)

3.2.3 Direct numerical simulation(DNS)

3.2.4 MRF-Multiple Reference Frame Method

3.3 Wall treatments

3.4 Experimental Method

3.4.1 Wind Tunnel Test

3.4.2 LDA(Laser Doppler Anemometer)

3.4.3 PIV(Particle Image Velocimetry)

3.5 Wind Tunnel Errors

3.6 Summary

Chapter 4 EXPERIMENTAL INVESTIGATION OF THE FLOW FIELD AROUND OPEN-WHEEL RACE CAR

4.1 Hunan University HD-2 wind tunnel

4.2 Instrumentation and Measurement Techniques

4.2.1 Balance system

4.2.2 Pressure measurement system

4.2.3 Velocity measurement system

4.2.4 Suction system

4.2.5 Particle Image Velocimetry(PIV)

4.3 The effect of ground boundary layer on the result of measurement and modify

4.4 Wind tunnel setup

4.5 Results

4.5.1 The suction system close

4.5.2 The suction system open

4.5.3 Flow structure at the plane Y=0 of open-wheel race car rear wing

4.6 Summary

Chapter 5 NUMERICAL SIMULATION OF THE AERODYNAMIC CHARACTERISTICSAROUND OPEN-WHEEL RACE CAR IN CASES:STATIONARY AND ROTATING WHEELS

5.1 Introduction

5.2 Ansys Icem and Fluent

5.3 Simulation process the flow field of Open-wheel Race car

5.4 Computation setup

5.4.1 Race car geometrical parameters

5.4.2 Computation domain

5.4.3 Governing equations and diseretization

5.4.4 The MRF method

5.4.5 Convergence criteria and validation

5.4.6 Turbulence Modelling

5.4.7 Mesh generation and grid independence test

5.4.8 The boundary conditions

5.5.Results

5.5.1 Pressure distribution on wheel of race car

5.5.2 Pressure distribution around race car

5.5.3 Pressure distribution on front and rear wing

5.5.4 Flow characteristics around the wheel of the race car

5.5.5 Flow characteristics around the race car

5.5.6 Flow characteristics around front-rear wing of race car

5.6 Summary

Chapter 6 OPTIMIZATION OPEN-WHEEL RACE CAR REAR WING

6.1 Introduction

6.2 The aerodynamic optimization method based on approximation model method

6.2.1 Design of Experiment

6.2.2 The approximate model

6.2.3 The optimization algorithm selection

6.2.4 The process of the aerodynamic forces optimization based on the approximate model

6.3 Open-wheel race car rear wing optimization

6.3.1 Aerodynamic of airfoils

6.3.2 The rear wing geometric model

6.3.3 Numerical simulation and establishment approximate model

6.3.4 Objective and constraint functions

6.4 Optimization result

6.4.1 Test result by numerical simulation method

6.4.2 Test result by experimental method

6.5 Summary

Chapter 7 AERODYNAMIC CHARACTERISTICS OF OPEN-WHEEL RACE CAR IN TURN A CORNER

7.1 Introduction User-defined funotion(UDF)

7.1.1 Introduction

7.1.2 UDF functions

7.1.3 UDF code

7.2 The Process of numerical simulation

7.2.1 Computation domain

7.2.2 Mesh generation

7.2.3 The boundary conditions

7.3 Results

7.3.1 Velocity distribution around open-wheel of race car

7.3.2 Pressure distribution around open-wheel of race car

7.4 Summary

CONCLUSION AND FUTURE WORK

REFERENCES

APPENDIX

ACKNOWLEDGEMENTS

展开▼

摘要

空气动力学特性已经成为汽车设计中的一个重要因素,特别是对于类一级方程式赛车,空气动力学特性已成为决定比赛成败的关键因素。虽然赛车的气动性能研究已经逐渐展开,并被诸如Ferrari,McLaren,Williams,Sauber这些汽车队伍大力发展,但是,这些研究成果并未见于任何公开发表的文献资源中,究其原因是不同赛车团队之间存在的竞争关系。因此,这篇文章的目的就是利用实验和CFD技术,分析讨论类一级方程式赛车的空气动力学性能。
  汽车风洞试验是研究汽车气动性能最直接、最准确的方法,本文试验在湖南大学HD-2风洞中进行,实验使用的是1∶3开轮式赛车缩比模型,基于类一级方程式赛车的尺寸大小,保证气流的雷诺数为3.11*10e6。本文对赛车的阻力系数及升力系数进行了实验测量,阻力系数的测量结果与相关文献吻合较好,升力系数的测量结果与相关文献有一定的偏差,究其原因是升力系数更容易受到模型在风洞中安装的不确定性或者风洞结构的影响。抽吸系统的开启与关闭也对升力与阻力有较大影响。风速为30m/s时,关闭抽吸系统,测得阻力系数为0.828,升力系数为-0.1105。开启抽吸系统后,测得阻力系数为0.852,升力系数为-0.150。同时,利用粒子图形成像技术(PIV)对类F1赛车周边的流场结构进行了研究讨论,具体包括表面静压、风速大小以及风速流线等。
  鉴于轮胎的旋转效应对赛车周边流场的巨大影响,本文对轮胎旋转时赛车周边的流场结构进行了分析讨论。为保证仿真与实验的可对比性,仿真相对于实验模型为1∶1。鉴于网格的质量,湍流模型,边界条件均会对赛车的气动特性产生影响,本文对其进行了探讨。通过对比分析实验测得的风阻系数及其他常用湍流模型的计算结果,确定Realizable k-ε为最佳求解模型。轮胎静止时,基于Realizable k-ε计算得到的阻力系数与实验吻合较好。轮胎旋转时,尾部纵对称面的流场结构比轮胎静止时的尾流结构更加复杂。本文基于MRF方法,结合Realizable k-ε湍流模型,对轮胎旋转时的工况进行了研究。通过对比表面静压分布,分离点及停滞点的位置,分析下压力及气动阻力减小的原因。
  一级方程式赛车具备卓越动力性能,对于牵引力以及轮胎和路面间的粘性摩擦力的需求较为显著,简单并行之有效的解决方案即是对负升力翼进行改进,优化赛车受到的下压力及气动阻力。本文基于CFD方法和Isight软件改进尾翼攻角,进而优化赛车的受力情况。利用Kriging模型近似模拟50组样本点(受力角度),并进行验证,以确定Kriging模型的准确性。然后通过NSGA-Ⅱ基因算法优化翼型攻角。优化后,机翼的气动特性得到了较大提升,并在最小气动阻力的情况下,得到了最大下压力。这将大大提升赛车在比赛中得竞争力,为赛车尾翼设计提供了重要参考。
  比赛时,赛车不仅沿直线行驶,而且经常会遇到各种弯道。经过这些弯道时,分布在赛车上的压力和速度不断变化。通过研究赛车转弯时的气动特性,有助于提高其最大速度和稳定性,从而提高比赛的竞争力。因此,本文利用计算流体力学软件Fluent,结合用户自定义函数(UDF)对开轮式赛车过弯道时的瞬态气动特性展开研究。
  未来工作对一级方程式赛车周围流场的建议与畅想在文章的最后有提出。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号