首页> 中文学位 >铝碳耐火材料中碳纳米管结构演变、原位形成及材料力学性能研究
【6h】

铝碳耐火材料中碳纳米管结构演变、原位形成及材料力学性能研究

代理获取

目录

声明

摘要

第一章 文献综述

1.1 前言

1.2 洁净钢冶炼的发展对碳复合耐火材料的要求

1.2.1 洁净钢冶炼的重要意义

1.2.2 耐火材料与洁净钢冶炼之间的关系

1.2.3 洁净钢冶炼对碳复合耐火材料的要求

1.3 低碳碳复合耐火材料的研究现状

1.3.1 微/纳米结构碳源

1.3.2 原位形成陶瓷相

1.4 碳纳米管复合耐火材料在低碳化方面的重要意义

1.5 碳纳米管在陶瓷基复合材料中的研究现状

1.5.1 分散性

1.5.2 界面性

1.5.3 结构蚀变性

1.5.4 碳纳米管的增强增韧机理

1.6 本论文的提出及研究内容

第二章 高温复杂环境下多壁碳纳米管结构演变研究

2.1 实验

2.1.1 原料

2.1.2 实验过程与方案

2.1.3 结构与性能表征

2.2 结果与讨论

2.2.1 物相组成

2.2.2 显微结构

2.2.3 抗氧化性能

2.2.4 氧化动力学

2.2.5 讨论

2.3 小结

第三章 多壁碳纳米管表面修饰聚碳硅烷形成陶瓷涂层研究

3.1 实验

3.1.1 原料及化学试剂

3.1.2 实验过程及方案

3.1.3 结构与性能表征

3.2 结果与讨论

3.2.1 聚碳硅烷的裂解产物

3.2.2 多壁碳纳米管表面涂层的形成

3.3 小结

第四章 含多壁碳纳米管的铝碳耐火材料微结构和性能研究

4.1 含多壁碳纳米管的铝碳耐火材料微结构及性能研究

4.1.1 实验

4.1.2 结果与讨论

4.2 含功能修饰多壁碳纳米管的铝碳耐火材料微结构和性能研究

4.2.1 实验

4.2.2 结果与讨论

4.3 小结

第五章 催化裂解酚醛树脂形成碳纳米管研究

5.1 掺杂酚醛树脂热解碳结构及性能研究

5.1.1 实验

5.1.2 结果与讨论

5.2 铝碳耐火材料基质中催化形成碳纳米管和陶瓷晶须研究

5.2.1 实验

5.2.2 结果与讨论

5.3 小结

第六章 掺杂酚醛树脂对铝碳耐火材料微结构和性能影响研究

6.1 实验

6.1.1 实验原料

6.1.2 实验过程与方案

6.1.3 结构与性能表征

6.2 结果与讨论

6.2.1 物相组成

6.2.2 显微结构

6.2.3 物理性能

6.2.4 力学性能

6.2.5 讨论

6.3 小结

第七章 总结论与展望

参考文献

本论文的创新点

硕博连读期间已发表的论文、专利及获奖情况

致谢

展开▼

摘要

碳复合耐火材料具有优异的热震稳定性和抗渣侵蚀性能而被广泛用作转炉、电炉、钢包等炼钢和连铸系统的炉衬材料,而着眼于当前世界各国“低碳经济”的外部环境,以及进一步满足冶炼洁净钢的要求,传统碳复合耐火材料必然向低碳、超低碳方向发展。但单纯降低传统碳复合耐火材料中的鳞片石墨含量,会导致材料的韧性降低、热震稳定性能变差。碳纳米管(carbon nanotubes,CNTs)作为一种新型纳米碳源具有非常优异的力学性能,将其部分或全部取代鳞片石墨引入到低碳碳复合耐火材料中,有望解决材料韧性低、热震稳定性差的问题。从目前来看,限制碳纳米管在碳复合耐火材料中应用的主要原因是其成本高、在材料中易发生团聚导致分散困难以及高温复杂环境下易发生结构蚀变等。
  针对上述存在的问题,本论文首先探讨了多壁碳纳米管(multi-walled carbon nanotubes,MWCNTs)在高温复杂环境下的结构演变规律,系统研究了MWCNTs表面修饰聚碳硅烷(Polycarbosilane,PCS)以及原位裂解形成SiCxOy陶瓷涂层的工艺条件,以解决MWCNTs在碳复合耐火材料中的结构蚀变问题。另一方面,系统研究了催化剂Fe、Co、Ni的硝酸盐掺杂酚醛树脂的裂解碳结构及原位催化形成碳纳米管的生成机理,旨在为解决碳纳米管的使用成本和分散问题提供另一条途径。在上述研究工作的基础上,研究了碳纳米管复合铝碳耐火材料的显微结构与力学性能之间的关系。本论文可以得到如下结论:
  (1)高温复杂环境下,MWCNTs的结构演变主要与不同硅源作用下体系中Si(g)和SiO(g)的分压密切相关。以Si为硅源时,体系中的Si(g)分压最高,其不断在MWCNTs表面反应和沉积,使得较低温度下MWCNTs表面生成了SiC反应层,而较高温度下MWCNTs演变成SiC纳米线;以Si+SiO2作为硅源时,体系中的SiO(g)分压最高,其与CO(g)反应并不断沉积,使得MWCNTs表面形成了无定形SiO2-SiC的反应层结构,且SiO2反应层的厚度随着处理温度的上升而不断增大;而以Al+SiO2作为硅源时,体系中Si(g)和SiO(g)的分压均最低,MWCNTs即使经高温(1500℃)处理后表面也只能生成很薄的反应层。MWCNTs的氧化温度和氧化活化能因其表面形成上述反应层而大幅度提高,主要由反应层的厚度决定的。
  (2)在MWCNTs表面功能修饰PCS,高温作用下原位裂解形成SiCxOy陶瓷涂层,为阻止MWCNTs的结构蚀变提供一条新的途径。MWCNTs的抗氧化性能也因其表面形成的陶瓷涂层而大幅度提高,主要由涂层的厚度决定,与处理过程中PCS的浓度和裂解温度密切相关。
  (3)在铝碳耐火材料中引入MWCNTs会对其显微结构和力学性能产生影响。MWCNTs的引入,提高了不同温度处理后材料的抗折强度、弹性模量和形变位移量等力学性能。当处理温度低于1000℃时,MWCNTs自身对材料进行增强增韧作用;高于1000℃时,MWCNTs和原位形成的陶瓷晶须对材料进行协同增强增韧作用。但随着MWCNTs含量的增加,其发生团聚降低了材料的力学性能。经PCS修饰后的MWCNTs在铝碳耐火材料中的分散性大幅度改善,同时材料热处理过程中PCS裂解在MWCNTs表面原位生成SiCxOy陶瓷涂层,阻止了MWCNTs的结构蚀变并提高了MWCNTs与基体之间的界面结合,进一步提高了材料的力学性能和抗氧化性。
  (4)采用过渡金属元素的硝酸盐对酚醛树脂进行掺杂处理,经高温裂解后原位催化形成CNTs,为解决CNTs在碳复合耐火材料中使用成本和分散问题提供一条新的途径。随着处理温度的升高,掺杂树脂裂解碳中形成的碳纳米管等纳米石墨碳结构含量增加,石墨化度不断增加。其中,硝酸镍在掺杂树脂裂解过程中更容易以金属单质形式存在,相对于硝酸铁和硝酸钴来说具有更好的催化性能。同时,上述催化剂还能够促进铝碳耐火材料基质内部AlN、Al4C3和SiC等陶瓷晶须的形成。
  (5)基于上述研究工作,将硝酸镍掺杂酚醛树脂引入到铝碳耐火材料中,在材料内部能够原位催化形成MWCNTs,同时在较高的温度(高于1000℃)下催化形成更多的陶瓷晶须。原位形成的MWCNTs以及其与陶瓷晶须协同增强增韧作用分别赋予Al2O3-C耐火材料在较低(低于1000℃)和较高温度(高于1000℃)下更加优异的力学性能。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号