【24h】

Galvanic corrosion of carbon steel under argillite layers in carbonated media

机译:碳酸盐岩中泥质层下碳钢的电偶腐蚀

获取原文
获取原文并翻译 | 示例

摘要

This study relates to the problem of long-term interim storage of nuclear wastes. In France, it is envisaged that high-level radioactive wastes will be confined in a glass matrix, stored in a stainless steel canister, itself placed in a carbon steel overpack. The wastes will then be stored at a depth of ~450 m in a deep geological disposal, drilled in a very stiff (indurated) clay (argillite) formation. Because of the intense radioactivity, a temperature as high as 90℃ is expected at the steel surface. In these conditions, magnetite, siderite and chukanovite are the main expected corrosion products of steel .One of the possible risks of localized corrosion of the carbon steel overpack is the galvanic coupling that might happen between two zones of the metal covered with different corrosion products or in contact with different electrolytes. This phenomenon is also known in the oil and gas industry and often described as mesa-corrosion.rnTo address this problem, the effects of the galvanic coupling between a magnetite electrode and a bare carbon steel electrode were investigated at 25℃ and 80℃. Both electrodes were covered by a ~5 mm thick argillite layer that strongly hinders the transport of oxygen and more generally the transport of matter [1-2], and immersed in a NaHCO3 (0.01 mol L~(-1)) + NaCl (0.01 mol L~(-1)) solution. The current density between the two electrodes was monitored thanks to a ZRA (zero resistance ammeter) method for different surfaces ratios (S_(anode)/S_(cathode)). To simulate a local source of sulfide species (sulfate reducing bacteria or pyrite FeS2, a mineral present in argillite), the galvanic coupling between a first carbon steel electrode immersed in a sulfide-containing solution and another immersed in a NaHCO_3 + NaCl solution was studied at 80℃, the electrodes being covered by a ~5 mm thick argillite layer. In both kinds of experiment, μ-Raman spectroscopy was used to identify the compounds formed on the electrodes at the end of the experiment.rnIn both cases, galvanic corrosion could be observed, associated with significant galvanic current densities (10-60 μA/cm~(-2)). The galvanic current proved more important between magnetite (cathode) and steel (anode) at 80℃. In most cases, the galvanic current tended to decrease with time. Raman analysis revealed that the electrodes coupled with magnetite were covered by a corrosion products layer made of an inner stratum of magnetite and an outer stratum of siderite and chukanovite. The magnetite stratum was not homogeneous, implying that anodic areas were still remaining on the carbon steel surface.
机译:这项研究涉及核废料的长期临时储存问题。在法国,设想将高放射性废物限制在玻璃基质中,并储存在不锈钢罐中,该不锈钢罐本身放置在碳钢外包装中。然后,这些废物将在约450 m的深度处进行深层地质处置,并在非常坚硬(受激)的粘土(泥石)地层中钻孔。由于强烈的放射性,预计钢表面的温度将高达90℃。在这些条件下,磁铁矿,菱铁矿和chukanovite是钢的主要预期腐蚀产物。碳钢外包装局部腐蚀的可能风险之一是在覆盖有不同腐蚀产物的金属的两个区域之间或在两个区域之间可能发生的电偶合。与不同的电解质接触。为了解决这个问题,在25℃和80℃下研究了磁铁矿电极和裸碳钢电极之间的电偶耦合效应。该现象在石油和天然气工业中也是众所周知的,通常被称为台面腐蚀。两个电极均被〜5 mm厚的硅藻土层覆盖,该层强烈阻碍了氧气的运输,更普遍地阻碍了物质的运输[1-2],并浸入NaHCO3(0.01 mol L〜(-1))+ NaCl( 0.01 mol L〜(-1))溶液。借助ZRA(零电阻电流表)方法,针对不同的表面比率(S_(阳极)/ S_(阴极)),可以监控两个电极之间的电流密度。为了模拟硫化物物种的本地来源(硫酸盐还原细菌或黄铁矿FeS2,一种存在于辉石中的矿物),研究了浸入含硫化物溶液中的第一个碳钢电极与浸入NaHCO_3 + NaCl溶液中的另一个碳钢电极之间的电耦合。在80℃下,电极被〜5 mm厚的硅藻土层覆盖。在这两种实验中,均使用μ拉曼光谱法鉴定了在实验结束时在电极上形成的化合物.rn在这两种情况下,均可以观察到电腐蚀,并且电电流密度很高(10-60μA/ cm 〜(-2))。在80℃时,磁铁矿(阴极)和钢(阳极)之间的电流更为重要。在大多数情况下,电流趋于随时间减小。拉曼分析显示,与磁铁矿耦合的电极被腐蚀产物层覆盖,该腐蚀产物层由磁铁矿的内层,菱铁矿和chukanovite的外层组成。磁铁矿层不均匀,这意味着阳极区域仍残留在碳钢表面上。

著录项

  • 来源
  • 会议地点 Pisa(IT)
  • 作者单位

    Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE),FRE 3474 CNRS-Univ. La Rochelle, Bât. Marie Curie, Av. Michel Crépeau,F-17042 La Rochelle cedex 01, France,ANDRA, Parc de la Croix Blanche, 1/7 rue Jean Monnet, F-92298 Châtenay-Malabry, France;

    Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE),FRE 3474 CNRS-Univ. La Rochelle, Bât. Marie Curie, Av. Michel Crépeau,F-17042 La Rochelle cedex 01, France;

    Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE),FRE 3474 CNRS-Univ. La Rochelle, Bât. Marie Curie, Av. Michel Crépeau,F-17042 La Rochelle cedex 01, France;

    Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE),FRE 3474 CNRS-Univ. La Rochelle, Bât. Marie Curie, Av. Michel Crépeau,F-17042 La Rochelle cedex 01, France;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号