首页> 外文会议>ASME summer bioengineering conference;SBC2010 >Water-Fat Decomposition by IDEAL-MRI With Phase Estimation: A Method to Determine Chemical Contents In Vivo
【24h】

Water-Fat Decomposition by IDEAL-MRI With Phase Estimation: A Method to Determine Chemical Contents In Vivo

机译:通过IDEAL-MRI进行水脂肪分解并进行相估计:一种确定体内化学成分的方法

获取原文
获取原文并翻译 | 示例

摘要

High-resolution Magnetic Resonance Imaging (MRI) of humans and animals in vivo is routine and non-invasive. Identifying and quantifying chemical composition of tissue from acquired images is a challenge. MR spectroscopy (MRS) may be used to identify chemical components accurately over a finite volume in the tissue. However, the temporal and spatial resolutions are limited. Multi-spectral MRI exploits the multiple modes of MR such as T_1 T_2 and proton density maps and classifies voxels into different tissue types, but the chemical identity of the tissue remains unknown. Many fat suppression methods were developed because the unwanted fat signal often compromises image interpretability in clinical MRI, but these techniques are sensitive to MR field inhomogeneity. Multi-point Dixon methods separate MR images into water and fat images and are less sensitive to field inhomogeneity [1] and IDEAL-MR1 (iterative decomposition of water and fat with echo asymmetry and least-squares estimation) improved upon the Dixon methods by avoiding the problem of phase unwrapping [2]. However, special care has to be taken when estimating the field map to avoid erroneous solutions to the least-squares estimation problem which lead to artifacts such as swapping of water and fat. The use of region growing schemes (with a reliable seed) mitigates this problem as demonstrated in previous studies [3][4]. However, the seed is not always reliable and growing schemes can be sensitive to phase discontinuities. Moreover, although the technology was successfully demonstrated on many clinical scanners, only limited applications were found in preclinical scanners with high MR field where the field inhomogeneity can be far worse [5]. We developed a robust and accurate algorithm to compute water and fat content on an 11.7T small animal scanner by improving upon existing phase estimation methods through multiple starting pixels and consensus-based region growing. The method, after further validation,has the potential of providing a translatable assay to study disease progression and regression related to fat and water contents in various animal models, such as studying atherosclerotic plaque composition.
机译:人和动物体内的高分辨率磁共振成像(MRI)是常规且非侵入性的。从获取的图像中识别和量化组织的化学成分是一个挑战。 MR光谱法(MRS)可用于在组织中的有限体积内准确地识别化学成分。但是,时间和空间分辨率受到限制。多光谱MRI利用MR的多种模式,例如T_1 T_2和质子密度图,并将体素分类为不同的组织类型,但是组织的化学身份仍然未知。由于不需要的脂肪信号通常会损害临床MRI中的图像解释性,因此开发了许多脂肪抑制方法,但是这些技术对MR场的不均匀性敏感。多点Dixon方法将MR图像分为水图像和脂肪图像,并且对场不均匀性[1]和IDEAL-MR1(通过回波不对称和最小二乘估计的水和脂肪迭代分解)较不敏感,因此避免了相位展开问题[2]。但是,在估计场图时必须格外小心,以避免对最小二乘估计问题的错误解决,这会导致诸如水和脂肪交换的伪影。如先前的研究[3] [4]所示,使用区域生长方案(具有可靠的种子)可以缓解该问题。但是,种子并不总是可靠的,并且生长方案可能对相位不连续很敏感。此外,尽管该技术已在许多临床扫描仪上成功展示,但在具有高MR场的临床前扫描仪中仅发现了有限的应用,在这些应用中,场的不均匀性可能更加严重[5]。通过改进现有的相位估计方法(通过多个起始像素和基于共识的区域增长),我们开发了一种鲁棒且准确的算法来计算11.7T小型动物扫描仪上的水和脂肪含量。经过进一步验证,该方法具有提供可翻译的分析方法来研究与各种动物模型中的脂肪和水分含量有关的疾病进展和消退的潜力,例如研究动脉粥样硬化斑块的组成。

著录项

  • 来源
  • 会议地点 Naples FL(US);Naples FL(US)
  • 作者单位

    Department of Applied Computer Science andrnMathematicsrnMerck Research Laboratories Rahway, NJ, 07065;

    rnDepartment of MathematicsrnSyracuse UniversityrnSyracuse, NY, 13244rnUSA;

    rnDepartment of ImagingrnMerck Research LaboratoriesrnRahway, NJ, 07065rnUSA;

    rnDepartment of ImagingrnMerck Research LaboratoriesrnBoston, MA, 02115rnUSA;

    Department of Applied Computer Science andrnMathematicsrnMerck Research Laboratories Rahway, NJ, 07065;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人体工程学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号