首页> 外文会议>Structural health monitoring: research and applications >In-situ Blade Deflection Monitoring of a Wind Turbine using a Wireless Laser Displacement Sensor Device within the Tower
【24h】

In-situ Blade Deflection Monitoring of a Wind Turbine using a Wireless Laser Displacement Sensor Device within the Tower

机译:使用塔内的无线激光位移传感器设备对风力涡轮机进行叶片原位偏转监控

获取原文
获取原文并翻译 | 示例

摘要

With commercially viable global wind power potential, wind energy penetration is further expected to rise, as will the related problems. One issue is the collision of wind turbine blades with the tower during operation. Structured health monitoring is required to improve operational safety, minimize the risk of sudden failure or total breakdown, ensure reliable power generation, and reduce wind turbine life cycle costs. Large numbers of sensors such as fiber Bragg grating and piezoelectric devices have been attached to the structure, a design that is uneconomical and impractical for use in large wind turbines. This study proposes a single laser displacement sensor (LDS) system in which all of the rotating blades could be cost-effectively evaluated. Contrary to the approach of blade sensor installation, the LDS system is installed in the tower to enable noncontact blade displacement monitoring. The concept of a noncontact sensor and actuator and their energy delivery device installation in the tower will enable various approaches for wind turbine structural health monitoring. Blade bolt loosening causes deflection in the affected blade. Similarly, nacelle tilt or mass loss damage in the blade will result in changes in blade deflection, but the proposed system can identify such problems with ease. With the need of more energy, the sizes of wind blades are getting bigger and bigger. Due to the large size of wind turbine, nowadays wind turbines are installed very high above the ground or water level. It is impractical to monitor the results from LDS through wired connection in these cases. Hence, the wired connection of LDS to base (monitoring) station must be replaced by a wireless solution. This wireless solution is achieved using Zigbee technology. Zigbee operates in the industrial, scientific and medical (ISM) radio bands, typically 2.4 GHz, 915 MHz and 868 MHz. The output from the LDS is fed to the microcontroller which acts as an analog to digital converter. The output from the microcontroller is connected to the Zigbee transceiver module, which transmits the data and at the other end, the zigbee reads the data and displays on the PC from where user can monitor the condition of wind blades.
机译:具有商业上可行的全球风力发电潜力,以及相关问题也将进一步提高风能普及率。一个问题是在运行过程中风力涡轮机叶片与塔架的碰撞。需要进行结构化的健康监控,以提高操作安全性,最大程度地降低突然故障或总故障的风险,确保可靠的发电并降低风力涡轮机的生命周期成本。大量传感器(例如光纤布拉格光栅和压电设备)已连接到该结构,这种设计对于大型风力涡轮机而言不经济且不切实际。这项研究提出了一个单一的激光位移传感器(LDS)系统,其中所有旋转刀片都可以进行经济有效的评估。与刀片传感器安装方法相反,LDS系统安装在塔架中,以实现非接触式刀片位移监控。非接触式传感器和执行器的概念及其在塔架中的能量输送装置的安装将使风力涡轮机结构健康状况监测的各种方法成为可能。刀片螺栓松动会导致受影响的刀片偏斜。类似地,机舱的机舱倾斜或叶片中的质量损失损坏将导致叶片挠度的变化,但是建议的系统可以轻松识别此类问题。随着更多能量的需求,风叶的尺寸越来越大。由于风力涡轮机的大尺寸,如今,风力涡轮机安装在地面或水平面以上很高的位置。在这种情况下,通过有线连接监视LDS的结果是不切实际的。因此,LDS到基站(监视)站的有线连接必须替换为无线解决方案。该无线解决方案是使用Zigbee技术实现的。 Zigbee在工业,科学和医学(ISM)频段中工作,通常为2.4 GHz,915 MHz和868 MHz。 LDS的输出被馈送到微控制器,该微控制器充当模数转换器。微控制器的输出连接到Zigbee收发器模块,后者传输数据,而另一端,Zigbee读取数据并在PC上显示,用户可以从中监视风叶的状况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号