首页> 外文会议>Solid-state sensor and actuator workshop : Technical digest >POST-CMOS MODULAR INTEGRATION OF POLY-SIGE MICROSTRUCTURES USINGPOLY-GE SACRIFICIAL LAYERS
【24h】

POST-CMOS MODULAR INTEGRATION OF POLY-SIGE MICROSTRUCTURES USINGPOLY-GE SACRIFICIAL LAYERS

机译:使用 r nPOLY-GE牺牲层对多尺度微结构进行CMOS后集成

获取原文
获取原文并翻译 | 示例

摘要

Polycrystalline silicon-germanium (poly-SiGe) microstructuresrnhave been fabricated on standard CMOS wafers withrnaluminum metallization. Hydrogen peroxide (H_2O_2) etches thernsacrificial polycrystalline germanium (poly-Ge) layer withoutrnsignificantly etching the p-type poly-SiGe structural layer. Inrncontrast to HF sacrificial release etches, no special protectionrnof the underlying CMOS layers is needed. For the first time, thernfabrication of LPCVD surface microstructures directly on top ofrnstandard electronics is demonstrated, which leads to dramaticrnreductions in both MEMS-CMOS interconnect parasitics andrndevice area.rnInitial measurements indicate that poly-SiGe hasrnpromising material properties. Its fracture strength is 1.2 ±rnO.l%, which is comparable to that of poly-Si. A folded flexurernlateral resonator has a quality factor in vacuum as high asrn~15,000. No stress or dopant-activation anneal of the structuralrnlayer is needed, since the in-situ boron-doped poly-SiGe isrnfound to have an as-deposited stress of only -10 MParn(compressive) and a resistivity of only 1.8 mΩ-cm. From arncantilever-beam array, the strain gradient is found to be ratherrnhigh (+1.4 × 1O~(-4) (μm)~(-1)), so that a 120 μm cantilever bendsrnaway from the substrate by 1 μm at its tip. Deposition andrnannealing conditions have yet to be optimized to minimizernstrain gradient.
机译:多晶硅锗(poly-SiGe)微结构已在具有铝金属化作用的标准CMOS晶圆上制造。过氧化氢(H_2O_2)蚀刻牺牲多晶锗(poly-Ge)层,而不会显着蚀刻p型多晶硅SiGe结构层。与HF牺牲释放蚀刻相反,不需要在底层CMOS层上进行特殊保护。首次展示了直接在标准电子器件上制造LPCVD表面微结构的方法,这导致MEMS-CMOS互连寄生效应和器件面积的显着降低。初始测量表明,多晶硅SiGe具有令人鼓舞的材料性能。其断裂强度为1.2±rn0.1%,与多晶硅相当。折叠的弯曲外侧谐振器在真空中的品质因数高达asn〜15,000。无需进行结构层的应力或掺杂剂激活退火,因为发现原位掺杂硼的多晶硅SiGe的沉积应力仅为-10 MParn(压缩),电阻率仅为1.8mΩ-cm。从方棒梁阵列中发现应变梯度相当高(+1.4×1O〜(-4)(μm)〜(-1)),因此120μm的悬臂梁从基板的顶端弯曲1μm 。沉积和退火条件尚未优化以最小化应变梯度。

著录项

  • 来源
  • 会议地点 Hilton Head Island SC(US)
  • 作者单位

    Department of Electrical Engineering and Computer Sciences Berkeley Sensor Actuator Center University of California at Berkeley, Berkeley, CA 94720-1770;

    rnDepartment of Electrical Engineering and Computer Sciences Berkeley Sensor Actuator Center University of California at Berkeley, Berkeley, CA 94720-1770;

    rnDepartment of Mechanical Engineering,University of California at Berkeley, Berkeley, CA 94720-1770 Berkeley Sensor Actuator Center University of California at Berkeley, Berkeley, CA 94720-1770;

    rnDepartment of Electrical Engineering and Computer Sciences;

    rnDepartment of Electrical Engineering and Computer Sciences Department of Mechanical Engineering,University of California at Berkeley, Berkeley, CA 94720-1770 Berkeley Sensor Actuator Center University of California at Berkeley, Berkeley, CA 94720-1770;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TM938.865;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号