首页> 外文会议>Sohn International Symposium on Advanced Processing of Metals and Materials vol.1; 20060827-31; San Diego,CA(US) >USING SOHN'S LAW OF ADDITIVE REACTION TIMES FOR MODELING A MULTIPARTICLE REACTOR. THE CASE OF THE MOVING BED FURNACE CONVERTING URANIUM TRIOXIDE INTO TETRAFLUORIDE
【24h】

USING SOHN'S LAW OF ADDITIVE REACTION TIMES FOR MODELING A MULTIPARTICLE REACTOR. THE CASE OF THE MOVING BED FURNACE CONVERTING URANIUM TRIOXIDE INTO TETRAFLUORIDE

机译:使用SOHN的加成反应时间定律来建模多粒子反应器。移动床式炉将三氧化铀转化为四氟的情况

获取原文
获取原文并翻译 | 示例

摘要

One of the major issues with multiparticle reactors is to handle their multiscale aspect. For modeling, it usually comes to coupling a reactor model (describing the phenomena at the macroscopic scale) with a so-called grain model (simulating the behavior of a single grain or a particle). An interesting approach proposed by H.Y. Sohn (1978) is to use the law of additive reaction times in order to calculate, approximately but analytically, the reaction rate of a particle in the reactor model. Its great advantage, compared to a numerical grain model, is to drastically reduce the computation time, particularly in the case of complex reactor models. This is the approach we retained for modeling the moving bed furnace, a counter-current gas-solid reactor used in the nuclear fuel-making route for producing uranium tetrafluoride from uranium trioxide. The numerical model we developed is 2-dimensional, steady-state and based on the finite volume method. It describes solid and gas flow, convective, conductive and radiative heat transfers, and six chemical reactions involved in the process. The law of additive reaction times is used to calculate analytically the rate of the three principal gas-solid reactions at every discrete point in the reactor. We have demonstrated the validity of this approach by comparing its results with those calculated from a numerical grain model. Also detailed in the paper are the main results of the moving bed furnace model itself and the possibilities of optimizing the process revealed by the calculations.
机译:多颗粒反应器的主要问题之一是处理它们的多尺度方面。为了建模,通常需要将反应堆模型(在宏观尺度上描述现象)与所谓的晶粒模型(模拟单个晶粒或颗粒的行为)结合起来。 H.Y.提出的一种有趣的方法Sohn(1978)将使用加成反应时间定律,以便近似但解析地计算反应器模型中颗粒的反应速率。与数字粒度模型相比,它的巨大优势是可以大大减少计算时间,尤其是在复杂的反应堆模型中。这是我们保留的方法,用于对移动床炉进行建模,该移动床炉是在核燃料生产路线中用于从三氧化铀生产四氟化铀的逆流气固反应器。我们开发的数值模型是二维的稳态且基于有限体积法。它描述了固体和气体的流动,对流,传导和辐射的热传递,以及过程中涉及的六个化学反应。使用加成反应时间定律来分析性地计算反应器中每个离散点的三个主要气固反应的速率。通过将其结果与从数字粒度模型计算的结果进行比较,我们已经证明了该方法的有效性。本文还详细介绍了移动床炉模型本身的主要结果以及通过计算得出的优化过程的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号