首页> 外文会议>Reporters, markers, dyes, nanoparticles, and molecular probes for biomedical applications V >Fluorescent proteins as singlet oxygen photosensitizers: mechanistic studies in photodynamic inactiv ation of bacteria
【24h】

Fluorescent proteins as singlet oxygen photosensitizers: mechanistic studies in photodynamic inactiv ation of bacteria

机译:荧光蛋白作为单线态氧光敏剂:细菌光动力学失活的机理研究

获取原文
获取原文并翻译 | 示例

摘要

Antimicrobial photodynamic therapy (aPDT) combines a photosensitizer, light and oxygen to produce reactive oxygen species (ROS), mainly singlet oxygen (~1O_2), to photo-oxidize important biomolecules and induce cell death. aPDT is a promising alternative to standard antimicrobial strategies, but its mechanisms of action are not well understood. One of the reasons for that is the lack of control of the photosensitizing drugs location. Here we report the use of genetically-encoded fluorescent proteins that are also ~1O_2 photosensitizers to address the latter issue. First, we have chosen the red fluorescent protein TagRFP as a photosensitizer, which unlike other fluorescent proteins such as KillerRed, is able to produce ~1O_2 but not other ROS. TagRFP photosensitizes ~1O_2 with a small, but not negligible, quantum yield. In addition, we have used miniSOG, a more efficient ~1O_2 photosensitizing fluorescent flavoprotein that has been recently engineered from phototropin 2. We have genetically incorporated these two photosensitizers into the cytosol of E. coli and demonstrated that intracellular ~1O_2 is sufficient to kill bacteria. Additional assays have provided further insight into the mechanism of cell death. Photodamage seems to occur primarily in the inner membrane, and extends to the outer membrane if the photosensitizer's efficiency is high enough. These observations are markedly different to those reported for external photosensitizers, suggesting that the site where ~1O_2 is primarily generated proves crucial for inflicting different types of cell damage.
机译:抗菌光动力疗法(aPDT)结合了光敏剂,光和氧气来产生活性氧(ROS),主要是单线态氧(〜1O_2),以光氧化重要的生物分子并诱导细胞死亡。 aPDT是标准抗菌策略的一种有前途的替代方法,但其作用机理尚不十分清楚。其原因之一是缺乏对光敏药物位置的控制。在这里,我们报告了遗传编码的荧光蛋白的使用,它们也是〜1O_2光敏剂,可以解决后一问题。首先,我们选择了红色荧光蛋白TagRFP作为光敏剂,它与其他荧光蛋白(例如KillerRed)不同,能够产生〜1O_2,但不能产生其他ROS。 TagRFP以很小但不可忽略的量子产率使〜1O_2光敏。此外,我们使用了miniSOG,这是一种最近有效的〜1O_2光敏荧光黄素蛋白,最近已由光蛋白2改造而成。我们已将这两种光敏剂遗传整合到大肠杆菌的细胞质中,并证明细胞内〜1O_2足以杀死细菌。 。额外的测定方法提供了对细胞死亡机制的进一步了解。如果光敏剂的效率足够高,光损伤似乎主要发生在内膜中,并延伸到外膜。这些观察结果与外部光敏剂报告的观察结果明显不同,表明主要产生〜1O_2的位点对造成不同类型的细胞损伤至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号