首页> 外文会议>Remote sensing for agriculture, ecosystems, and hydrology X >Comparison of field emissivities with laboratory measurements and ASTER data
【24h】

Comparison of field emissivities with laboratory measurements and ASTER data

机译:现场发射率与实验室测量值和ASTER数据的比较

获取原文
获取原文并翻译 | 示例

摘要

Surface emissivity in the thermal infrared (TIR) region is an important parameter for determining the land surface temperature from remote sensing measurements. This work compares the emissivities measured by different field methods (the Box method and the Temperature and Emissivity Separation, TES, algorithm) as well as emissivity data from ASTER scenes and the spectra obtained from the ASTER Spectral Library. The study was performed with a field radiometer having TIR bands with central wavelengths at 11.3 μm, 10.6 μm, 9.1 μm, 8.7 μm and 8.4 μm, similar to the ASTER TIR bands. The measurements were made at two sites in southern New Mexico. The first was in the White Sands National Monument, and the second was an open shrub land in the Jornada Experimental Range, in the northern Chihuahuan Desert, New Mexico, USA. The measurements show that, in general, emissivities derived with the Box method agree within 3% with those derived with the TES method for the spectral bands centered at 10.6 μm and 11.3 μm. However, the emissivities for the shorter wavelength bands are higher when derived with the Box method than those with the TES algorithm (differences range from 2% to 7%). The field emissivities agree within 2% with the laboratory spectrum for the 8-13 μm, 11.3 μm and 10.6 μm bands. However, the field and laboratory measurements in general differ from 3% to 16% for the shorter wavelength bands, i.e., 9.1 μm, 8.6 μm and 8.4 μm. A good agreement between the experimental measurements and the ASTER TIR emissivity data is observed for White Sands, especially over the 9 - 12 μm range (agreement within 4%). The study showed an emissivity increase up to 17% in the 8 to 9 μm range and an increase of 8% in emissivity ratio of average channels (8.4 μm, 8.6 μm, 9.1 μm):(10.6 μm, 11.3 μm) for two gypsum samples with different water content.
机译:热红外(TIR)区域中的表面发射率是从遥感测量结果确定陆地表面温度的重要参数。这项工作比较了通过不同现场方法(Box方法以及温度和发射率分离,TES,算法)测得的发射率,以及来自ASTER场景的发射率数据和从ASTER光谱库获得的光谱。使用具有中心波长分别为11.3μm,10.6μm,9.1μm,8.7μm和8.4μm的TIR波段的野外辐射计进行研究,类似于ASTER TIR波段。测量是在新墨西哥州南部的两个地点进行的。第一个是在白沙国家保护区,第二个是在美国新墨西哥州北部奇瓦瓦沙漠的Jornada实验山脉的一片开放灌木地。测量结果表明,对于以10.6μm和11.3μm为中心的光谱带,通常使用Box方法得出的发射率与TES方法得出的发射率相差3%以内。但是,使用Box方法得出的较短波段的发射率要比使用TES算法得出的发射率更高(差异范围为2%至7%)。 8-13μm,11.3μm和10.6μm波段的场发射率与实验室光谱一致,在2%以内。但是,对于较短的波段,即9.1μm,8.6μm和8.4μm,现场和实验室的测量值通常在3%到16%之间。对于白沙,尤其是在9-12μm范围内(在4%以内),在实验测量值和ASTER TIR发射率数据之间观察到了很好的一致性。研究表明,在8至9μm的范围内,发射率最多可提高17%,而两个石膏的平均通道(8.4μm,8.6μm,9.1μm)的发射率比则增加8%:(10.6μm,11.3μm)含水量不同的样品。

著录项

  • 来源
  • 会议地点 Wales(GB);Wales(GB)
  • 作者单位

    Department of Earth Physics and Thermodynamics, Faculty of Physics, University of Valencia, C/ Dr. Moliner, 50, Burjassot 4100, Spain;

    Physical Sciences Laboratory, New Mexico State University, USA P.O. Box 30002 Las Cruces, NM 88003, USA;

    Department of Earth Physics and Thermodynamics, Faculty of Physics, University of Valencia, C/ Dr. Moliner, 50, Burjassot 4100, Spain;

    Department of Earth Physics and Thermodynamics, Faculty of Physics, University of Valencia, C/ Dr. Moliner, 50, Burjassot 4100, Spain;

    Department of Earth Physics and Thermodynamics, Faculty of Physics, University of Valencia, C/ Dr. Moliner, 50, Burjassot 4100, Spain;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境遥感;
  • 关键词

    emissivity; thermal infrared; ASTER; box method; TES;

    机译:发射率热红外紫STER;盒法TES;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号